論文の概要: GNNAS-Dock: Budget Aware Algorithm Selection with Graph Neural Networks for Molecular Docking
- arxiv url: http://arxiv.org/abs/2411.12597v1
- Date: Tue, 19 Nov 2024 16:01:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:35:31.850505
- Title: GNNAS-Dock: Budget Aware Algorithm Selection with Graph Neural Networks for Molecular Docking
- Title(参考訳): GNNAS-Dock:分子ドッキングのためのグラフニューラルネットワークを用いた予算認識アルゴリズムの選択
- Authors: Yiliang Yuan, Mustafa Misir,
- Abstract要約: 本稿では,新しいグラフネットワーク(GNN)を用いた分子ドッキングのための自動アルゴリズム選択システムであるGNNASDockを紹介する。
GNNは、状況とタンパク質の両方の複雑な構造データを処理できる。
これらは、異なる条件下での様々なドッキングアルゴリズムの性能を予測するために、固有のグラフのような特性の恩恵を受ける。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Molecular docking is a major element in drug discovery and design. It enables the prediction of ligand-protein interactions by simulating the binding of small molecules to proteins. Despite the availability of numerous docking algorithms, there is no single algorithm consistently outperforms the others across a diverse set of docking scenarios. This paper introduces GNNAS-Dock, a novel Graph Neural Network (GNN)-based automated algorithm selection system for molecular docking in blind docking situations. GNNs are accommodated to process the complex structural data of both ligands and proteins. They benefit from the inherent graph-like properties to predict the performance of various docking algorithms under different conditions. The present study pursues two main objectives: 1) predict the performance of each candidate docking algorithm, in terms of Root Mean Square Deviation (RMSD), thereby identifying the most accurate method for specific scenarios; and 2) choose the best computationally efficient docking algorithm for each docking case, aiming to reduce the time required for docking while maintaining high accuracy. We validate our approach on PDBBind 2020 refined set, which contains about 5,300 pairs of protein-ligand complexes.
- Abstract(参考訳): 分子ドッキングは、薬物の発見と設計において重要な要素である。
タンパク質への小さな分子の結合をシミュレートすることで、リガンド-タンパク質相互作用の予測を可能にする。
多数のドッキングアルゴリズムが利用可能であるにもかかわらず、さまざまなドッキングシナリオにおいて、一貫して他のアルゴリズムよりも優れるアルゴリズムは存在しない。
本稿では,新しいグラフニューラルネットワーク(GNN)を用いた分子ドッキングのための自動アルゴリズム選択システムであるGNNAS-Dockを紹介する。
GNNはリガンドとタンパク質の両方の複雑な構造データを処理できる。
これらは、異なる条件下での様々なドッキングアルゴリズムの性能を予測するために、固有のグラフのような特性の恩恵を受ける。
本研究は2つの目的を追求する。
1) 各候補ドッキングアルゴリズムの性能を,Root Mean Square Deviation (RMSD) を用いて予測し,特定のシナリオに対して最も正確な方法を特定する。
2) ドッキングに要する時間を高精度に保ちつつ, ドッキングに要する時間を削減すべく, ドッキングケース毎に最適な計算効率のドッキングアルゴリズムを選択する。
約5,300対のタンパク質-リガンド錯体を含むPDBBind 2020精製集合に対するアプローチを検証する。
関連論文リスト
- Scalable Graph Compressed Convolutions [68.85227170390864]
ユークリッド畳み込みのための入力グラフのキャリブレーションに置換を適用する微分可能手法を提案する。
グラフキャリブレーションに基づいて,階層型グラフ表現学習のための圧縮畳み込みネットワーク(CoCN)を提案する。
論文 参考訳(メタデータ) (2024-07-26T03:14:13Z) - PLA-SGCN: Protein-Ligand Binding Affinity Prediction by Integrating Similar Pairs and Semi-supervised Graph Convolutional Network [6.024776891570197]
半教師付きグラフ畳み込みネットワーク(GCN)を用いたPLA予測(タスク予測ステップ)において検索したハードタンパク質-リガンドペアを統合することを目的とする。
その結果,提案手法は同等の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-05-13T03:27:02Z) - Quantum molecular docking with quantum-inspired algorithm [4.959284967789063]
本稿ではQAに着想を得た新しい量子分子ドッキング(QMD)手法を提案する。
我々は2つのバイナリ符号化法を構築し、指数的にビット数を減らした自由度を効率的に識別する。
我々は,QMDが検索ベースであるAuto VinaとディープラーニングのDIFFDOCKに対して,再ドッキングと自己ドッキングの両方のシナリオで優位性を示したことを示す。
論文 参考訳(メタデータ) (2024-04-12T06:24:45Z) - Quantum-Inspired Machine Learning for Molecular Docking [9.16729372551085]
分子ドッキングは、構造に基づく薬物設計において重要なツールであり、薬物開発効率を向上する。
結合部位やコンホメーションの探索による従来のドッキングは計算が複雑であり、盲点ドッキングでは不十分である。
量子特性と空間最適化問題を組み合わせた量子インスピレーションアルゴリズムを提案する。
本手法は従来のドッキングアルゴリズムとディープラーニングに基づくアルゴリズムを10%以上上回る性能を示した。
論文 参考訳(メタデータ) (2024-01-22T09:16:41Z) - Multi-scale Iterative Refinement towards Robust and Versatile Molecular
Docking [17.28573902701018]
分子ドッキング(英: molecular docking)は、小分子のタンパク質標的への結合コンホメーションを予測するために使われる重要な計算ツールである。
我々は、効率的な分子ドッキング用に設計された堅牢で汎用的なフレームワークであるDeltaDockを紹介する。
論文 参考訳(メタデータ) (2023-11-30T14:09:20Z) - Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph
Neural Networks [0.9785311158871759]
本稿では,ディープラーニングに基づくサロゲートモデリングを適用し,ドッキングプロセスを大幅に高速化するフレームワークであるDeep Surrogate Docking(DSD)を紹介する。
我々は、DSDワークフローとFiLMv2アーキテクチャを組み合わせることで、分子スクリーニングにおける9.496倍の高速化と3%のリコールエラー率が得られることを示した。
論文 参考訳(メタデータ) (2022-11-04T19:36:02Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
我々は、剛体タンパク質ドッキング、すなわち、個々の非結合構造からタンパク質-タンパク質複合体の3次元構造を計算的に予測する。
本研究では, タンパク質の回転と翻訳を予測し, 1つのタンパク質をドッキング位置に置くために, ペアワイズ非独立なSE(3)-等変グラフマッチングネットワークを設計する。
我々のモデルはEquiDockと呼ばれ、結合ポケットを近似し、キーポイントマッチングとアライメントを用いてドッキングポーズを予測する。
論文 参考訳(メタデータ) (2021-11-15T18:46:37Z) - Structure-aware Interactive Graph Neural Networks for the Prediction of
Protein-Ligand Binding Affinity [52.67037774136973]
薬物発見はタンパク質-リガンド結合親和性の予測にしばしば依存する。
近年の進歩は、タンパク質-リガンド複合体の表現を学習することで、グラフニューラルネットワーク(GNN)をより良い親和性予測に応用する大きな可能性を示している。
ポーラインスパイアグラフアテンション層(PGAL)とペア・インタラクティブ・プール(PiPool)の2つのコンポーネントから構成される構造対応型インタラクティブグラフニューラルネットワーク(SIGN)を提案する。
論文 参考訳(メタデータ) (2021-07-21T03:34:09Z) - Towards Efficient Graph Convolutional Networks for Point Cloud Handling [181.59146413326056]
ポイントクラウド上で学習するためのグラフ畳み込みネットワーク(GCN)の計算効率の向上を目指します。
一連の実験により、最適化されたネットワークは計算複雑性を減らし、メモリ消費を減らし、推論速度を加速した。
論文 参考訳(メタデータ) (2021-04-12T17:59:16Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。