論文の概要: When Backdoors Speak: Understanding LLM Backdoor Attacks Through Model-Generated Explanations
- arxiv url: http://arxiv.org/abs/2411.12701v1
- Date: Tue, 19 Nov 2024 18:11:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:14.155422
- Title: When Backdoors Speak: Understanding LLM Backdoor Attacks Through Model-Generated Explanations
- Title(参考訳): バックドアが話すとき: LLMのバックドア攻撃をモデル生成説明を通して理解する
- Authors: Huaizhi Ge, Yiming Li, Qifan Wang, Yongfeng Zhang, Ruixiang Tang,
- Abstract要約: 大規模言語モデル(LLM)は、バックドア攻撃に対して脆弱である。
本稿では,自然言語説明の新しいレンズを用いたバックドア機能について検討する。
- 参考スコア(独自算出の注目度): 58.27927090394458
- License:
- Abstract: Large Language Models (LLMs) are vulnerable to backdoor attacks, where hidden triggers can maliciously manipulate model behavior. While several backdoor attack methods have been proposed, the mechanisms by which backdoor functions operate in LLMs remain underexplored. In this paper, we move beyond attacking LLMs and investigate backdoor functionality through the novel lens of natural language explanations. Specifically, we leverage LLMs' generative capabilities to produce human-understandable explanations for their decisions, allowing us to compare explanations for clean and poisoned samples. We explore various backdoor attacks and embed the backdoor into LLaMA models for multiple tasks. Our experiments show that backdoored models produce higher-quality explanations for clean data compared to poisoned data, while generating significantly more consistent explanations for poisoned data than for clean data. We further analyze the explanation generation process, revealing that at the token level, the explanation token of poisoned samples only appears in the final few transformer layers of the LLM. At the sentence level, attention dynamics indicate that poisoned inputs shift attention from the input context when generating the explanation. These findings deepen our understanding of backdoor attack mechanisms in LLMs and offer a framework for detecting such vulnerabilities through explainability techniques, contributing to the development of more secure LLMs.
- Abstract(参考訳): 大きな言語モデル(LLM)は、隠れたトリガーがモデル動作を悪意を持って操作できるバックドア攻撃に対して脆弱である。
いくつかのバックドアアタック手法が提案されているが、LLMでバックドア機能を動作させるメカニズムは未解明のままである。
本稿では,LLMの攻撃を超えて,自然言語説明の新しいレンズによるバックドア機能の検討を行う。
具体的には, LLMの生成能力を活用して, 人為的な説明を判断し, 清潔で有毒なサンプルについての説明を比較する。
様々なバックドア攻撃を調査し、複数のタスクのためのLLaMAモデルにバックドアを埋め込む。
実験の結果, 汚染データと比較すると, 汚染データに対する高品質な説明が得られ, 汚染データに対する説明はクリーンデータよりもはるかに一貫した結果が得られた。
我々はさらに説明生成過程を解析し、トークンレベルでは、有毒試料の説明トークンがLLMの最後のいくつかのトランスフォーマー層にのみ現れることを明らかにした。
文レベルでは、注意力学は、有毒な入力が説明を生成する際に、入力コンテキストから注意を移すことを示している。
これらの知見はLLMのバックドア攻撃機構の理解を深め、説明可能性技術による脆弱性検出のためのフレームワークを提供し、より安全なLLMの開発に寄与する。
関連論文リスト
- MEGen: Generative Backdoor in Large Language Models via Model Editing [56.46183024683885]
大規模言語モデル(LLM)は目覚ましい能力を示している。
その強力な生成能力は、様々なクエリや命令に基づいて柔軟な応答を可能にする。
本稿では,最小サイドエフェクトでNLPタスクをカスタマイズしたバックドアを構築することを目的とした,MEGenという編集ベースの生成バックドアを提案する。
論文 参考訳(メタデータ) (2024-08-20T10:44:29Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
本研究は,無意味な接尾辞攻撃を状況駆動型文脈書き換えによって意味のあるプロンプトに変換することを検討する。
我々は、独立して意味のある敵の挿入と映画から派生した状況を組み合わせて、LLMを騙せるかどうかを確認します。
当社のアプローチでは,オープンソースとプロプライエタリなLLMの両方で,状況駆動型攻撃を成功させることが実証されている。
論文 参考訳(メタデータ) (2024-07-19T19:47:26Z) - Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models [35.77228114378362]
バックドア攻撃は大規模言語モデル(LLM)に重大な脅威をもたらす
これらの課題に対処するための新しいソリューションとして、CoS(Chain-of-Scrutiny)を提案する。
CoS は LLM を誘導して入力の詳細な推論ステップを生成し、最後に答えの整合性を確保するために推論プロセスを精査する。
論文 参考訳(メタデータ) (2024-06-10T00:53:25Z) - TrojanRAG: Retrieval-Augmented Generation Can Be Backdoor Driver in Large Language Models [16.71019302192829]
大規模言語モデル(LLM)は、自然言語処理(NLP)において顕著なパフォーマンスにもかかわらず、潜在的なセキュリティ脅威に対する懸念を提起している。
バックドア攻撃は当初、LLMがあらゆる段階で重大な損害を受けていることを証明したが、コストとロバスト性は批判されている。
本稿では,Retrieval-Augmented Generationにおいて,共同でバックドア攻撃を行うTrojanRAGを提案する。
論文 参考訳(メタデータ) (2024-05-22T07:21:32Z) - Backdoor Removal for Generative Large Language Models [42.19147076519423]
生成型大規模言語モデル(LLM)は、理解から推論まで、様々な自然言語処理(NLP)タスクを支配している。
悪意のある敵は、毒データをオンラインで公開し、毒データに基づいて事前訓練された被害者のLSMに対するバックドア攻撃を行うことができる。
生成LDMの不要なバックドアマッピングを除去するためにSANDE(Simulate and Eliminate)を提案する。
論文 参考訳(メタデータ) (2024-05-13T11:53:42Z) - Coercing LLMs to do and reveal (almost) anything [80.8601180293558]
大規模言語モデル(LLM)に対する敵対的攻撃は、有害なステートメントを作るためにモデルを「ジェイルブレイク」することができることが示されている。
LLMに対する敵対的攻撃のスペクトルは単なるジェイルブレイクよりもはるかに大きいと我々は主張する。
論文 参考訳(メタデータ) (2024-02-21T18:59:13Z) - Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents [47.219047422240145]
我々は、LSMベースのエージェントに対して、典型的な安全脅威であるバックドアアタックの1つを調査する第一歩を踏み出した。
具体的には、ユーザ入力とモデル出力のみを操作できる従来のLDMに対するバックドア攻撃と比較して、エージェントバックドア攻撃はより多様で隠蔽的な形式を示す。
論文 参考訳(メタデータ) (2024-02-17T06:48:45Z) - Setting the Trap: Capturing and Defeating Backdoors in Pretrained
Language Models through Honeypots [68.84056762301329]
近年の研究では、バックドア攻撃に対するプレトレーニング言語モデル(PLM)の感受性が明らかにされている。
バックドア情報のみを吸収するために,ハニーポットモジュールをオリジナルのPLMに統合する。
我々の設計は、PLMの低層表現が十分なバックドア特徴を持っているという観察に動機づけられている。
論文 参考訳(メタデータ) (2023-10-28T08:21:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。