論文の概要: Benchmarking Positional Encodings for GNNs and Graph Transformers
- arxiv url: http://arxiv.org/abs/2411.12732v1
- Date: Tue, 19 Nov 2024 18:57:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:46.944892
- Title: Benchmarking Positional Encodings for GNNs and Graph Transformers
- Title(参考訳): GNNとグラフ変換器における位置符号化のベンチマーク
- Authors: Florian Grötschla, Jiaqing Xie, Roger Wattenhofer,
- Abstract要約: 本稿では、メッセージパッシングGNNとGTの両方を含む統一フレームワークにおいて、位置 s (PE) のベンチマークを示す。
また,MPNNとGT間の理論的接続を確立するとともに,グローバル接続の影響を調べるためのGRITアテンション機構を導入する。
- 参考スコア(独自算出の注目度): 20.706469085872516
- License:
- Abstract: Recent advances in Graph Neural Networks (GNNs) and Graph Transformers (GTs) have been driven by innovations in architectures and Positional Encodings (PEs), which are critical for augmenting node features and capturing graph topology. PEs are essential for GTs, where topological information would otherwise be lost without message-passing. However, PEs are often tested alongside novel architectures, making it difficult to isolate their effect on established models. To address this, we present a comprehensive benchmark of PEs in a unified framework that includes both message-passing GNNs and GTs. We also establish theoretical connections between MPNNs and GTs and introduce a sparsified GRIT attention mechanism to examine the influence of global connectivity. Our findings demonstrate that previously untested combinations of GNN architectures and PEs can outperform existing methods and offer a more comprehensive picture of the state-of-the-art. To support future research and experimentation in our framework, we make the code publicly available.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)とグラフトランスフォーマー(GT)の最近の進歩は、アーキテクチャの革新と位置エンコーディング(PE)によって推進されている。
PEはGTにとって必須であり、トポロジカルな情報はメッセージパッシングなしで失われる。
しかし、PEはしばしば新しいアーキテクチャと共にテストされるため、確立されたモデルへの影響を分離することは困難である。
これを解決するために,メッセージパッシングGNNとGTの両方を含む統一フレームワーク上で,PEの包括的なベンチマークを示す。
また,MPNNとGT間の理論的接続を確立するとともに,グローバル接続の影響を調べるためのGRITアテンション機構を導入する。
従来のGNNアーキテクチャとPEの組み合わせは,既存の手法よりも優れており,最先端技術に関するより包括的なイメージを提供することができる。
フレームワークの今後の研究と実験を支援するため、コードを公開しています。
関連論文リスト
- Scalable Message Passing Neural Networks: No Need for Attention in Large Graph Representation Learning [15.317501970096743]
我々は、標準畳み込みメッセージパッシングを注意の代わりにプレ層正規化トランスフォーマースタイルのブロックに統合することにより、高性能なディープメッセージパッシングベースグラフニューラルネットワーク(GNN)を実現できることを示す。
結果は、大グラフトランスダクティブ学習における最先端の最先端と競合するが、それ以外は計算的かつメモリ拡張的な注意機構を必要としない。
論文 参考訳(メタデータ) (2024-10-29T17:18:43Z) - Learning Topological Representations with Bidirectional Graph Attention Network for Solving Job Shop Scheduling Problem [27.904195034688257]
既存の学習に基づくジョブショップスケジューリング問題の解法(JSSP)は、通常、非方向性グラフに適した既製のGNNモデルを使用し、解離グラフ(DG)のリッチで有意義な位相構造を無視する。
本稿では,JSSP を解決するための DG を局所検索フレームワークに組み込むためのトポロジ対応双方向グラフアテンションネットワーク (TBGAT) を提案する。
論文 参考訳(メタデータ) (2024-02-27T15:33:20Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - HINormer: Representation Learning On Heterogeneous Information Networks
with Graph Transformer [29.217820912610602]
グラフトランスフォーマー(GT)は、グラフ全体にわたってもメッセージパッシングがより広範なカバレッジに伝達できるパラダイムで機能する。
ヘテロジニアス情報ネットワーク(HIN)におけるGTの探索はまだ未公開である。
本稿では,ノード表現学習のための大域集約機構を利用するHINormerという新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-02-22T12:25:07Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
グラフニューラルネットワーク(GNN)の性能向上のための新しいフレームワークであるグラディエントゲーティング(G$2$)を提案する。
我々のフレームワークは,GNN層の出力を,基盤となるグラフのノード間でのメッセージパッシング情報のマルチレートフローのメカニズムでゲーティングすることに基づいている。
論文 参考訳(メタデータ) (2022-10-02T13:19:48Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - Long Range Graph Benchmark [32.317725340138104]
単にワンホップメッセージパッシングに頼るMP-GNNは、既存のグラフベンチマークでよく使われる。
ベースラインのGNNとGraph Transformerネットワークの両方をベンチマークし、長距離依存をキャプチャするモデルがこれらのタスクにおいて著しく優れていることを検証した。
論文 参考訳(メタデータ) (2022-06-16T13:33:22Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
任意のグラフの大きな問題は、ノードの標準位置情報の欠如である。
ノードの位置ノード(PE)を導入し、Transformerのように入力層に注入する。
両方のGNNクラスで学習可能なPEを考えると、分子データセットのパフォーマンスは2.87%から64.14%に向上する。
論文 参考訳(メタデータ) (2021-10-15T05:59:15Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。