Med-2E3: A 2D-Enhanced 3D Medical Multimodal Large Language Model
- URL: http://arxiv.org/abs/2411.12783v1
- Date: Tue, 19 Nov 2024 09:59:59 GMT
- Title: Med-2E3: A 2D-Enhanced 3D Medical Multimodal Large Language Model
- Authors: Yiming Shi, Xun Zhu, Ying Hu, Chenyi Guo, Miao Li, Ji Wu,
- Abstract summary: We propose Med-2E3, a novel MLLM for 3D medical image analysis that integrates 3D and 2D encoders.
To aggregate 2D features more effectively, we design a Text-Guided Inter-Slice (TG-IS) scoring module, which scores the attention of each 2D slice based on slice contents and task instructions.
Experiments on a large-scale, open-source 3D medical multimodal benchmark demonstrate that Med-2E3 exhibits task-specific attention distribution and significantly outperforms current state-of-the-art models.
- Score: 16.93216342922561
- License:
- Abstract: The analysis of 3D medical images is crucial for modern healthcare, yet traditional task-specific models are becoming increasingly inadequate due to limited generalizability across diverse clinical scenarios. Multimodal large language models (MLLMs) offer a promising solution to these challenges. However, existing MLLMs have limitations in fully leveraging the rich, hierarchical information embedded in 3D medical images. Inspired by clinical practice, where radiologists focus on both 3D spatial structure and 2D planar content, we propose Med-2E3, a novel MLLM for 3D medical image analysis that integrates 3D and 2D encoders. To aggregate 2D features more effectively, we design a Text-Guided Inter-Slice (TG-IS) scoring module, which scores the attention of each 2D slice based on slice contents and task instructions. To the best of our knowledge, Med-2E3 is the first MLLM to integrate both 3D and 2D features for 3D medical image analysis. Experiments on a large-scale, open-source 3D medical multimodal benchmark demonstrate that Med-2E3 exhibits task-specific attention distribution and significantly outperforms current state-of-the-art models, with a 14% improvement in report generation and a 5% gain in medical visual question answering (VQA), highlighting the model's potential in addressing complex multimodal clinical tasks. The code will be released upon acceptance.
Related papers
- E3D-GPT: Enhanced 3D Visual Foundation for Medical Vision-Language Model [23.56751925900571]
The development of 3D medical vision-language models holds significant potential for disease diagnosis and patient treatment.
We utilize self-supervised learning to construct a 3D visual foundation model for extracting 3D visual features.
We apply 3D spatial convolutions to aggregate and project high-level image features, reducing computational complexity.
Our model demonstrates superior performance compared to existing methods in report generation, visual question answering, and disease diagnosis.
arXiv Detail & Related papers (2024-10-18T06:31:40Z) - Interactive 3D Medical Image Segmentation with SAM 2 [17.523874868612577]
We explore the zero-shot capabilities of SAM 2, the next-generation Meta SAM model trained on videos, for 3D medical image segmentation.
By treating sequential 2D slices of 3D images as video frames, SAM 2 can fully automatically propagate annotations from a single frame to the entire 3D volume.
arXiv Detail & Related papers (2024-08-05T16:58:56Z) - M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Models [49.5030774873328]
Previous research has primarily focused on 2D medical images, leaving 3D images under-explored, despite their richer spatial information.
We present a large-scale 3D multi-modal medical dataset, M3D-Data, comprising 120K image-text pairs and 662K instruction-response pairs.
We also introduce a new 3D multi-modal medical benchmark, M3D-Bench, which facilitates automatic evaluation across eight tasks.
arXiv Detail & Related papers (2024-03-31T06:55:12Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - Med3DInsight: Enhancing 3D Medical Image Understanding with 2D
Multi-Modal Large Language Models [1.64647940449869]
Existing 3D convolution and transformer-based methods have limited semantic understanding of an image volume.
We propose Med3DInsight, which marries existing 3D image encoders with 2D MLLMs and bridges them via a Plane-Slice-Aware Transformer (PSAT) module.
arXiv Detail & Related papers (2024-03-08T08:15:53Z) - T3D: Towards 3D Medical Image Understanding through Vision-Language
Pre-training [33.548818136506334]
We introduce T3D, the first framework designed for high-resolution 3D medical images.
T3D incorporates two text-informed pretext tasks: (lowerromannumeral1) text-informed contrastive learning; (lowerromannumeral2) text-informed image restoration.
T3D significantly outperforms current vSSL methods in tasks like organ and tumor segmentation, as well as disease classification.
arXiv Detail & Related papers (2023-12-03T23:03:22Z) - An Embodied Generalist Agent in 3D World [67.16935110789528]
We introduce LEO, an embodied multi-modal generalist agent that excels in perceiving, grounding, reasoning, planning, and acting in the 3D world.
We collect large-scale datasets comprising diverse object-level and scene-level tasks, which require considerable understanding of and interaction with the 3D world.
Through extensive experiments, we demonstrate LEO's remarkable proficiency across a wide spectrum of tasks, including 3D captioning, question answering, embodied reasoning, navigation and manipulation.
arXiv Detail & Related papers (2023-11-18T01:21:38Z) - JM3D & JM3D-LLM: Elevating 3D Understanding with Joint Multi-modal Cues [68.76032126906743]
We introduce JM3D, a comprehensive approach integrating point cloud, text, and image.
Key contributions include the Structured Multimodal Organizer (SMO), enriching vision-language representation with multiple views and hierarchical text.
Our advanced model, JM3D-LLM, marries 3D representation with large language models via efficient fine-tuning.
arXiv Detail & Related papers (2023-10-14T06:13:20Z) - Towards Generalist Foundation Model for Radiology by Leveraging
Web-scale 2D&3D Medical Data [66.9359934608229]
This study aims to initiate the development of Radiology Foundation Model, termed as RadFM.
To the best of our knowledge, this is the first large-scale, high-quality, medical visual-language dataset, with both 2D and 3D scans.
We propose a new evaluation benchmark, RadBench, that comprises five tasks, including modality recognition, disease diagnosis, visual question answering, report generation and rationale diagnosis.
arXiv Detail & Related papers (2023-08-04T17:00:38Z) - MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D
Biomedical Image Classification [59.10015984688104]
MedMNIST v2 is a large-scale MNIST-like dataset collection of standardized biomedical images.
The resulting dataset consists of 708,069 2D images and 10,214 3D images in total.
arXiv Detail & Related papers (2021-10-27T22:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.