Quantum Prometheus: Defying Overhead with Recycled Ancillas in Quantum Error Correction
- URL: http://arxiv.org/abs/2411.12813v2
- Date: Sat, 23 Nov 2024 22:37:22 GMT
- Title: Quantum Prometheus: Defying Overhead with Recycled Ancillas in Quantum Error Correction
- Authors: Avimita Chatterjee, Archisman Ghosh, Swaroop Ghosh,
- Abstract summary: Quantum error correction (QEC) is crucial for ensuring the reliability of quantum computers.
QEC codes depend heavily on ancilla qubits for stabilizer measurements.
We propose reducing the number of ancilla qubits by reusing the same ancilla qubits for both X- and Z-type stabilizers.
- Score: 2.089191490381739
- License:
- Abstract: Quantum error correction (QEC) is crucial for ensuring the reliability of quantum computers. However, implementing QEC often requires a significant number of qubits, leading to substantial overhead. One of the major challenges in quantum computing is reducing this overhead, especially since QEC codes depend heavily on ancilla qubits for stabilizer measurements. In this work, we propose reducing the number of ancilla qubits by reusing the same ancilla qubits for both X- and Z-type stabilizers. This is achieved by alternating between X and Z stabilizer measurements during each half-round, cutting the number of required ancilla qubits in half. This technique can be applied broadly across various QEC codes, we focus on rotated surface codes only and achieve nearly \(25\%\) reduction in total qubit overhead. We also present a few use cases where the proposed idea enables the usage of higher-distance surface codes at a relatively lesser qubit count. Our analysis shows that the modified approach enables users to achieve similar or better error correction with fewer qubits, especially for higher distances (\(d \geq 13\)). Additionally, we identify conditions where the modified code allows for extended distances (\(d + k\)) while using the same or fewer resources as the original, offering a scalable and practical solution for quantum error correction. These findings emphasize the modified surface code's potential to optimize qubit usage in resource-constrained quantum systems.
Related papers
- Qubit-efficient quantum combinatorial optimization solver [0.0]
We develop a qubit-efficient algorithm that overcomes the limitation by mapping a candidate bit solution to an entangled wave function of fewer qubits.
This approach could benefit near-term intermediate-scale and future fault-tolerant small-scale quantum devices.
arXiv Detail & Related papers (2024-07-22T11:02:13Z) - Maximum Likelihood Quantum Error Mitigation for Algorithms with a Single
Correct Output [5.601537787608725]
Quantum error mitigation is an important technique to reduce the impact of noise in quantum computers.
We propose a simple and effective mitigation scheme, qubit-wise majority vote, for quantum algorithms with a single correct output.
arXiv Detail & Related papers (2024-02-19T04:44:33Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Optimal Qubit Reuse for Near-Term Quantum Computers [0.18188255328029254]
Increasing support for mid-circuit measurements and qubit reset in near-term quantum computers enables qubit reuse.
We introduce a formal model for qubit reuse optimization that delivers provably optimal solutions.
We show improvements in the number of qubits and swap gate insertions, estimated success probability, and Hellinger fidelity of the investigated quantum circuits.
arXiv Detail & Related papers (2023-07-31T23:15:45Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Improving the speed of variational quantum algorithms for quantum error
correction [7.608765913950182]
We consider the problem of devising a suitable Quantum Error Correction (QEC) procedures for a generic quantum noise acting on a quantum circuit.
In general, there is no analytic universal procedure to obtain the encoding and correction unitary gates.
We address this problem using a cost function based on the Quantum Wasserstein distance of order 1.
arXiv Detail & Related papers (2023-01-12T19:44:53Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.