Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array
- URL: http://arxiv.org/abs/2212.01550v2
- Date: Wed, 14 Dec 2022 04:28:39 GMT
- Title: Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array
- Authors: Alexis T.E. Shaw, Michael J. Bremner, Alexandru Paler, Daniel Herr,
Simon J. Devitt
- Abstract summary: This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
- Score: 59.24209911146749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the relationship between the width of a qubit
lattice constrained in one dimension and physical thresholds for scalable,
fault-tolerant quantum computation. To circumvent the traditionally low
thresholds of small fixed-width arrays, we deliberately engineer an error bias
at the lowest level of encoding using the surface code. We then address this
engineered bias at a higher level of encoding using a lattice-surgery surface
code bus that exploits this bias, or a repetition code to make logical qubits
with unbiased errors out of biased surface code qubits. Arbitrarily low error
rates can then be reached by further concatenating with other codes, such as
Steane [[7,1,3]] code and the [[15,7,3]] CSS code. This enables a scalable
fixed-width quantum computing architecture on a square qubit lattice that is
only 19 qubits wide, given physical qubits with an error rate of $8.0\times
10^{-4}$. This potentially eases engineering issues in systems with fine qubit
pitches, such as quantum dots in silicon or gallium arsenide.
Related papers
- Many-hypercube codes: High-rate quantum error-correcting codes for high-performance fault-tolerant quantum computing [0.0]
We propose high-rate small-size quantum error-detecting codes as a new family of high-rate quantum codes.
Their simple structure allows for a geometrical interpretation using hypercubes corresponding to logical qubits.
We achieve high error thresholds even in a circuit-level noise model.
arXiv Detail & Related papers (2024-03-24T07:46:26Z) - Towards early fault tolerance on a 2$\times$N array of qubits equipped with shuttling [0.0]
Two-dimensional grid of locally-interacting qubits is promising platform for fault tolerant quantum computing.
In this paper, we show that such constrained architectures can also support fault tolerance.
We demonstrate that error correction is possible and identify the classes of codes that are naturally suited to this platform.
arXiv Detail & Related papers (2024-02-19T23:31:55Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Measurement-free fault-tolerant logical zero-state encoding of the
distance-three nine-qubit surface code in a one-dimensional qubit array [0.0]
We propose an efficient encoding method for the distance-three, nine-qubit surface code and show its fault tolerance.
We experimentally demonstrate the logical zero-state encoding of the surface code using a superconducting quantum computer on the cloud.
We numerically show that fault-tolerant encoding of this large code can be achieved by appropriate error detection.
arXiv Detail & Related papers (2023-03-30T08:13:56Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Correcting spanning errors with a fractal code [7.6146285961466]
We propose an efficient decoder for the Fibonacci code'; a two-dimensional classical code that mimics the fractal nature of the cubic code.
We perform numerical experiments that show our decoder is robust to one-dimensional, correlated errors.
arXiv Detail & Related papers (2020-02-26T19:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.