Human-Robot Dialogue Annotation for Multi-Modal Common Ground
- URL: http://arxiv.org/abs/2411.12829v1
- Date: Tue, 19 Nov 2024 19:33:54 GMT
- Title: Human-Robot Dialogue Annotation for Multi-Modal Common Ground
- Authors: Claire Bonial, Stephanie M. Lukin, Mitchell Abrams, Anthony Baker, Lucia Donatelli, Ashley Foots, Cory J. Hayes, Cassidy Henry, Taylor Hudson, Matthew Marge, Kimberly A. Pollard, Ron Artstein, David Traum, Clare R. Voss,
- Abstract summary: We describe the development of symbolic representations annotated on human-robot dialogue data to make dimensions of meaning accessible to autonomous systems participating in collaborative, natural language dialogue, and to enable common ground with human partners.
A particular challenge for establishing common ground arises in remote dialogue, where a human and robot are engaged in a joint navigation and exploration task of an unfamiliar environment, but where the robot cannot immediately share high quality visual information due to limited communication constraints.
Within this paradigm, we capture propositional semantics and the illocutionary force of a single utterance within the dialogue through our Dialogue-AMR annotation, an augmentation of Abstract Meaning Representation
- Score: 4.665414514091581
- License:
- Abstract: In this paper, we describe the development of symbolic representations annotated on human-robot dialogue data to make dimensions of meaning accessible to autonomous systems participating in collaborative, natural language dialogue, and to enable common ground with human partners. A particular challenge for establishing common ground arises in remote dialogue (occurring in disaster relief or search-and-rescue tasks), where a human and robot are engaged in a joint navigation and exploration task of an unfamiliar environment, but where the robot cannot immediately share high quality visual information due to limited communication constraints. Engaging in a dialogue provides an effective way to communicate, while on-demand or lower-quality visual information can be supplemented for establishing common ground. Within this paradigm, we capture propositional semantics and the illocutionary force of a single utterance within the dialogue through our Dialogue-AMR annotation, an augmentation of Abstract Meaning Representation. We then capture patterns in how different utterances within and across speaker floors relate to one another in our development of a multi-floor Dialogue Structure annotation schema. Finally, we begin to annotate and analyze the ways in which the visual modalities provide contextual information to the dialogue for overcoming disparities in the collaborators' understanding of the environment. We conclude by discussing the use-cases, architectures, and systems we have implemented from our annotations that enable physical robots to autonomously engage with humans in bi-directional dialogue and navigation.
Related papers
- SCOUT: A Situated and Multi-Modal Human-Robot Dialogue Corpus [5.063252743855561]
We introduce the Situated Corpus Of Understanding Transactions (SCOUT)
It is a collection of human-robot dialogue in the task domain of collaborative exploration.
SCOUT contains 89,056 utterances and 310,095 words from 278 dialogues averaging 320 utterances per dialogue.
arXiv Detail & Related papers (2024-11-19T20:18:55Z) - Bridging Information Gaps in Dialogues With Grounded Exchanges Using Knowledge Graphs [4.449835214520727]
We study the potential of large language models for conversational grounding.
Our approach involves annotating human conversations across five knowledge domains to create a new dialogue corpus called BridgeKG.
Our findings offer insights into how these models use in-context learning for conversational grounding tasks and common prediction errors.
arXiv Detail & Related papers (2024-08-02T08:07:15Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
This study provides a comprehensive overview of the primary characteristics of a dialogue agent, their corresponding open-domain datasets, and the methods used to benchmark these datasets.
We propose UNIT, a UNified dIalogue dataseT constructed from conversations of existing datasets for different dialogue tasks capturing the nuances for each of them.
arXiv Detail & Related papers (2023-07-14T10:05:47Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
We propose enhancing dialogue disentanglement by taking full advantage of the dialogue discourse characteristics.
We develop a structure-aware framework to integrate the rich structural features for better modeling the conversational semantic context.
Our work has great potential to facilitate broader multi-party multi-thread dialogue applications.
arXiv Detail & Related papers (2023-06-06T19:17:47Z) - Enabling Harmonious Human-Machine Interaction with Visual-Context
Augmented Dialogue System: A Review [40.49926141538684]
Visual Context Augmented Dialogue System (VAD) has the potential to communicate with humans by perceiving and understanding multimodal information.
VAD possesses the potential to generate engaging and context-aware responses.
arXiv Detail & Related papers (2022-07-02T09:31:37Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
We propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder.
BiDeN explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks.
Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
arXiv Detail & Related papers (2022-04-18T03:51:46Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
We review the previous methods from the perspective of dialogue modeling.
We discuss three typical patterns of dialogue modeling that are widely-used in dialogue comprehension tasks.
arXiv Detail & Related papers (2021-03-04T15:50:17Z) - Conversational Norms for Human-Robot Dialogues [0.32228025627337864]
This paper describes a recently initiated research project aiming at supporting development of computerised dialogue systems that handle breaches of conversational norms.
Our approach is to model dialogue and norms with co-operating distributed grammar systems (CDGSs)
arXiv Detail & Related papers (2021-03-02T13:28:18Z) - Structured Attention for Unsupervised Dialogue Structure Induction [110.12561786644122]
We propose to incorporate structured attention layers into a Variational Recurrent Neural Network (VRNN) model with discrete latent states to learn dialogue structure in an unsupervised fashion.
Compared to a vanilla VRNN, structured attention enables a model to focus on different parts of the source sentence embeddings while enforcing a structural inductive bias.
arXiv Detail & Related papers (2020-09-17T23:07:03Z) - Is this Dialogue Coherent? Learning from Dialogue Acts and Entities [82.44143808977209]
We create the Switchboard Coherence (SWBD-Coh) corpus, a dataset of human-human spoken dialogues annotated with turn coherence ratings.
Our statistical analysis of the corpus indicates how turn coherence perception is affected by patterns of distribution of entities.
We find that models combining both DA and entity information yield the best performances both for response selection and turn coherence rating.
arXiv Detail & Related papers (2020-06-17T21:02:40Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.