Measuring photon correlation using imperfect detectors
- URL: http://arxiv.org/abs/2411.12835v1
- Date: Tue, 19 Nov 2024 19:41:59 GMT
- Title: Measuring photon correlation using imperfect detectors
- Authors: Rachel N. Clark, Sam G. Bishop, Joseph K. Cannon, John P. Hadden, Philip R. Dolan, Alastair G. Sinclair, Anthony J. Bennett,
- Abstract summary: We show how the efficiency-recovery, photon statistics and intensity have an interdependent relationship which suppresses a detector's ability to count photons and measure correlations.
We also demonstrate this effect with an experiment using $n$ such detectors to determine the $nmathrmth$ order correlation function with pseudothermal light.
- Score: 0.0
- License:
- Abstract: Single-photon detectors are ``blind" after the detection of a photon, and thereafter display a characteristic recovery in efficiency, during which the number of undetected photons depends on the statistics of the incident light. We show how the efficiency-recovery, photon statistics and intensity have an interdependent relationship which suppresses a detector's ability to count photons and measure correlations. We also demonstrate this effect with an experiment using $n$ such detectors to determine the $n^{\mathrm{th}}$ order correlation function with pseudothermal light.
Related papers
- Diagnosing electronic phases of matter using photonic correlation functions [0.0]
We show that it is possible to probe certain spin, charge, and topological orders in an electronic system by measuring the quadrature and correlation functions of photons scattered off it.
We construct a mapping from the correlation functions of the scattered photons to those of a correlated insulator.
arXiv Detail & Related papers (2024-10-31T17:59:41Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Wait-time Distributions for Photoelectric Detection of Light [0.0]
Wait-time distributions for the $n$th photo-detection at a detector illuminated by a stationary light beam are studied.
Simple analytic expressions are presented for several classical and quantum sources of light.
arXiv Detail & Related papers (2023-12-14T21:03:14Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - High-efficiency and fast photon-number resolving parallel
superconducting nanowire single-photon detector [0.0]
Single-photon detectors are an enabling technology in many areas such as photonic quantum computing, non-classical light source characterisation and quantum imaging.
Here, we demonstrate high-efficiency PNR detectors using a parallel superconducting nanowire single-photon detector (P-SNSPD) architecture that does not suffer from crosstalk between the pixels and that is free of latching.
arXiv Detail & Related papers (2022-07-29T08:15:46Z) - Full counting statistics of the photocurrent through a double quantum
dot embedded in a driven microwave resonator [0.0]
Detection of single, itinerant microwave photons is an important functionality for emerging quantum technology applications.
It was demonstrated that a double quantum dot (DQD) coupled to a microwave resonator can act as an efficient and continuous photodetector.
Here we theoretically investigate, in the same system, the fluctuations of the photocurrent through the DQD for a coherent microwave drive of the resonator.
arXiv Detail & Related papers (2022-07-14T14:17:30Z) - Photocounting statistics of superconducting nanowire single-photon
detectors [0.0]
Superconducting nanowire single-photon detectors (SNSPDs) are efficient measurement devices used for counting single photons.
We have included this feature into the photodetection theory and introduced the corresponding photocounting formula.
In the regime of continuous-wave detection, the photocounting statistics nonlinearly depends on the density operator due to a memory effect of previous measurement time windows.
arXiv Detail & Related papers (2022-06-08T17:44:57Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Frequency-resolved photon correlations in cavity optomechanics [58.720142291102135]
We analyze the frequency-resolved correlations of the photons being emitted from an optomechanical system.
We discuss how the time-delayed correlations can reveal information about the dynamics of the system.
This enriched understanding of the system can trigger new experiments to probe nonlinear phenomena in optomechanics.
arXiv Detail & Related papers (2020-09-14T06:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.