Efficacy of tomographic markers of photon addition to coherent states of light: Comparison with experiment
- URL: http://arxiv.org/abs/2401.16098v2
- Date: Fri, 14 Feb 2025 20:11:10 GMT
- Title: Efficacy of tomographic markers of photon addition to coherent states of light: Comparison with experiment
- Authors: Soumyabrata Paul, S. Lakshmibala, V. Balakrishnan, S. Ramanan,
- Abstract summary: markers of photon addition to coherent states of light are computable from relevant optical tomograms.<n>These markers could provide a viable procedure to characterize specific aspects of photon addition to light from the corresponding tomograms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photon addition to quantum states of light is of immense current interest, both experimentally and theoretically. We identify a set of markers of photon addition to coherent states of light, which are directly computable from relevant optical tomograms. The amplification gain due to photon addition, and the dependence of quadrature variances on relevant parameters, are calculated from the tomograms and compared with results from a recent experiment, obtained after state reconstruction. Our results match well with the fidelity plots reported by the experimenters. These markers could provide a viable procedure to characterize specific aspects of photon addition to light from the corresponding tomograms themselves.
Related papers
- Advancing the heralded photon-number-state characterization by understanding the interplay of experimental settings [0.0]
We theoretically explore the properties of heralded number states including up to three photons generated from single-mode twin beams.
Our results identify the optimal parameter regions for generating high quality photon-number states by heralding and provide useful insights for advancing their use in quantum technologies.
arXiv Detail & Related papers (2025-02-17T10:20:39Z) - Measuring photon correlation using imperfect detectors [0.0]
We show how the efficiency-recovery, photon statistics and intensity have an interdependent relationship which suppresses a detector's ability to count photons and measure correlations.
We also demonstrate this effect with an experiment using $n$ such detectors to determine the $nmathrmth$ order correlation function with pseudothermal light.
arXiv Detail & Related papers (2024-11-19T19:41:59Z) - Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Quantum-fluctuation asymmetry in multiphoton Jaynes-Cummings resonances [0.0]
We explore the statistical behavior of the light emanating from a coherently driven Jaynes-Cummings (JC) oscillator operating in the regime of multiphoton blockade.
We find that monitoring different quadratures of the cavity field in conditional homodyne detection affects the times waited between successive photon counter clicks''
Despite the fact that the steady-state cavity occupation is of the order of a photon, monitoring of the developing bimodality also impacts on the ratio between the emissions directed along the two decoherence channels.
arXiv Detail & Related papers (2024-05-22T12:48:59Z) - Experimental preparation of multiphoton-added coherent states of light [0.0]
Conditional addition of photons is a crucial tool for optical quantum state engineering.
We demonstrate the addition of one, two, and three photons to input coherent states with various amplitudes.
Results pave the way towards the experimental realization of complex optical quantum operations.
arXiv Detail & Related papers (2024-05-16T19:06:52Z) - Photon correlation time-asymmetry and dynamical coherence in multichromophoric systems [44.99833362998488]
We show that time-asymmetries in the cross-correlations of photons corresponding to different polarizations can be exploited to probe quantum coherent transport mechanisms and steady-state coherence properties.
Our results put forward photon correlation asymmetry as a promising approach to investigate coherent contributions to excited-stated dynamics in molecular aggregates and other many-site quantum emitters.
arXiv Detail & Related papers (2024-04-24T21:06:01Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Wait-time Distributions for Photoelectric Detection of Light [0.0]
Wait-time distributions for the $n$th photo-detection at a detector illuminated by a stationary light beam are studied.
Simple analytic expressions are presented for several classical and quantum sources of light.
arXiv Detail & Related papers (2023-12-14T21:03:14Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Relation between quantum illumination and quantum parameter estimation [7.261893691836341]
We show that signal-to-noise ratio and quantum Fisher information are equivalent to Quantum Illumination (QI) in the limit of zero object reflectivity.
We further demonstrate this equivalence by investigating QI protocols employing non-Gaussian states, which are obtained by de-Gaussifying the two-mode squeezed vacuum state with photon addition and photon subtraction.
arXiv Detail & Related papers (2023-08-14T13:57:53Z) - Transmission distance in the space of quantum channels [0.0]
We analyze distinguishability measures between quantum maps by employing the square root of the quantum Jensen-Shannon divergence.
We study exemplary Hamiltonian dynamics under decoherence.
arXiv Detail & Related papers (2023-04-17T16:13:10Z) - Optical and atomic decoherence in entangled atomic ensembles generated
by quantum nondemolition measurements [5.301892337432412]
We study the effects of decoherence in the form of optical phase diffusion, photon loss and gain, and atomic dephasing in entangled atomic ensembles.
For the optical decoherence channels, we use the technique of integration within ordered operators (IWOP) to obtain the Kraus operators that describe the decoherence.
arXiv Detail & Related papers (2023-02-25T11:16:22Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Un-symmetric photon subtraction: a method for generating high photon
number states and their relevance to loss estimation at ultimate quantum
limit [0.0]
We have studied theoretical un-symmetric multi-photon subtracted twin beam state and demonstrated a method for generating states that resembles to high photon number states.
A crucial point is high non-classicality is obtained by photon subtraction when mean photons per mode of twin beam state is low.
arXiv Detail & Related papers (2021-10-03T23:28:47Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Uncover quantumness in the crossover from BEC to quantum-correlated
phase [0.0]
We examine the role of the quantum entanglement of an assembly of two-level emitters coupled to a single-mode cavity.
This allows us to characterise the quantum correlated state for each regime.
arXiv Detail & Related papers (2021-01-18T05:06:59Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Photorefractive effect in LiNbO$_3$-based integrated-optical circuits
for continuous variable experiments [45.82374977939355]
Photorefractive effect might compromise success of on-chip quantum photonics experiments.
We focus on photorefractive effect induced by light at 775 nm, in the context of the generation of non-classical light at 1550 nm telecom wavelength.
arXiv Detail & Related papers (2020-07-22T12:37:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.