Data-to-Model Distillation: Data-Efficient Learning Framework
- URL: http://arxiv.org/abs/2411.12841v1
- Date: Tue, 19 Nov 2024 20:10:28 GMT
- Title: Data-to-Model Distillation: Data-Efficient Learning Framework
- Authors: Ahmad Sajedi, Samir Khaki, Lucy Z. Liu, Ehsan Amjadian, Yuri A. Lawryshyn, Konstantinos N. Plataniotis,
- Abstract summary: We propose a novel framework called Data-to-Model Distillation (D2M) to distill the real dataset's knowledge into the learnable parameters of a pre-trained generative model.
Our method effectively scales up to high-resolution 128x128 ImageNet-1K.
- Score: 14.44010988811002
- License:
- Abstract: Dataset distillation aims to distill the knowledge of a large-scale real dataset into small yet informative synthetic data such that a model trained on it performs as well as a model trained on the full dataset. Despite recent progress, existing dataset distillation methods often struggle with computational efficiency, scalability to complex high-resolution datasets, and generalizability to deep architectures. These approaches typically require retraining when the distillation ratio changes, as knowledge is embedded in raw pixels. In this paper, we propose a novel framework called Data-to-Model Distillation (D2M) to distill the real dataset's knowledge into the learnable parameters of a pre-trained generative model by aligning rich representations extracted from real and generated images. The learned generative model can then produce informative training images for different distillation ratios and deep architectures. Extensive experiments on 15 datasets of varying resolutions show D2M's superior performance, re-distillation efficiency, and cross-architecture generalizability. Our method effectively scales up to high-resolution 128x128 ImageNet-1K. Furthermore, we verify D2M's practical benefits for downstream applications in neural architecture search.
Related papers
- Large-Scale Data-Free Knowledge Distillation for ImageNet via Multi-Resolution Data Generation [53.95204595640208]
Data-Free Knowledge Distillation (DFKD) is an advanced technique that enables knowledge transfer from a teacher model to a student model without relying on original training data.
Previous approaches have generated synthetic images at high resolutions without leveraging information from real images.
MUSE generates images at lower resolutions while using Class Activation Maps (CAMs) to ensure that the generated images retain critical, class-specific features.
arXiv Detail & Related papers (2024-11-26T02:23:31Z) - ATOM: Attention Mixer for Efficient Dataset Distillation [17.370852204228253]
We propose a module to efficiently distill large datasets using a mixture of channel and spatial-wise attention.
By integrating both types of attention, our ATOM module demonstrates superior performance across various computer vision datasets.
arXiv Detail & Related papers (2024-05-02T15:15:01Z) - One Category One Prompt: Dataset Distillation using Diffusion Models [22.512552596310176]
We introduce Diffusion Models (D3M) as a novel paradigm for dataset distillation, leveraging recent advancements in generative text-to-image foundation models.
Our approach utilizes textual inversion, a technique for fine-tuning text-to-image generative models, to create concise and informative representations for large datasets.
arXiv Detail & Related papers (2024-03-11T20:23:59Z) - Importance-Aware Adaptive Dataset Distillation [53.79746115426363]
Development of deep learning models is enabled by the availability of large-scale datasets.
dataset distillation aims to synthesize a compact dataset that retains the essential information from the large original dataset.
We propose an importance-aware adaptive dataset distillation (IADD) method that can improve distillation performance.
arXiv Detail & Related papers (2024-01-29T03:29:39Z) - On the Diversity and Realism of Distilled Dataset: An Efficient Dataset Distillation Paradigm [8.220508517570577]
We propose RDED to enable both diversity and realism of the distilled data.
We can distill the full ImageNet-1K to a small dataset comprising 10 images per class within 7 minutes, achieving a notable 42% top-1 accuracy.
arXiv Detail & Related papers (2023-12-06T14:40:05Z) - Dataset Quantization [72.61936019738076]
We present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets.
DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio.
arXiv Detail & Related papers (2023-08-21T07:24:29Z) - Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation [96.92250565207017]
We study the data efficiency and selection for the dataset distillation task.
By re-formulating the dynamics of distillation, we provide insight into the inherent redundancy in the real dataset.
We find the most contributing samples based on their causal effects on the distillation.
arXiv Detail & Related papers (2023-05-28T06:53:41Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.