Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation
- URL: http://arxiv.org/abs/2305.18381v4
- Date: Wed, 7 Aug 2024 12:59:31 GMT
- Title: Distill Gold from Massive Ores: Bi-level Data Pruning towards Efficient Dataset Distillation
- Authors: Yue Xu, Yong-Lu Li, Kaitong Cui, Ziyu Wang, Cewu Lu, Yu-Wing Tai, Chi-Keung Tang,
- Abstract summary: We study the data efficiency and selection for the dataset distillation task.
By re-formulating the dynamics of distillation, we provide insight into the inherent redundancy in the real dataset.
We find the most contributing samples based on their causal effects on the distillation.
- Score: 96.92250565207017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-efficient learning has garnered significant attention, especially given the current trend of large multi-modal models. Recently, dataset distillation has become an effective approach by synthesizing data samples that are essential for network training. However, it remains to be explored which samples are essential for the dataset distillation process itself. In this work, we study the data efficiency and selection for the dataset distillation task. By re-formulating the dynamics of distillation, we provide insight into the inherent redundancy in the real dataset, both theoretically and empirically. We propose to use the empirical loss value as a static data pruning criterion. To further compensate for the variation of the data value in training, we find the most contributing samples based on their causal effects on the distillation. The proposed selection strategy can efficiently exploit the training dataset, outperform the previous SOTA distillation algorithms, and consistently enhance the distillation algorithms, even on much larger-scale and more heterogeneous datasets, e.g., full ImageNet-1K and Kinetics-400. We believe this paradigm will open up new avenues in the dynamics of distillation and pave the way for efficient dataset distillation. Our code is available on https://github.com/silicx/GoldFromOres-BiLP.
Related papers
- Label-Augmented Dataset Distillation [13.449340904911725]
We introduce Label-Augmented dataset Distillation (LADD) to enhance dataset distillation with label augmentations.
LADD sub-samples each synthetic image, generating additional dense labels to capture rich semantics.
With three high-performance dataset distillation algorithms, LADD achieves remarkable gains by an average of 14.9% in accuracy.
arXiv Detail & Related papers (2024-09-24T16:54:22Z) - Mitigating Bias in Dataset Distillation [62.79454960378792]
We study the impact of bias inside the original dataset on the performance of dataset distillation.
We introduce a simple yet highly effective approach based on a sample reweighting scheme utilizing kernel density estimation.
arXiv Detail & Related papers (2024-06-06T18:52:28Z) - Exploring the potential of prototype-based soft-labels data distillation for imbalanced data classification [0.0]
Main goal is to push further the performance of prototype-based soft-labels distillation in terms of classification accuracy.
Experimental studies trace the capability of the method to distill the data, but also the opportunity to act as an augmentation method.
arXiv Detail & Related papers (2024-03-25T19:15:19Z) - Importance-Aware Adaptive Dataset Distillation [53.79746115426363]
Development of deep learning models is enabled by the availability of large-scale datasets.
dataset distillation aims to synthesize a compact dataset that retains the essential information from the large original dataset.
We propose an importance-aware adaptive dataset distillation (IADD) method that can improve distillation performance.
arXiv Detail & Related papers (2024-01-29T03:29:39Z) - Dataset Distillation via Adversarial Prediction Matching [24.487950991247764]
We propose an adversarial framework to solve the dataset distillation problem efficiently.
Our method can produce synthetic datasets just 10% the size of the original, yet achieve, on average, 94% of the test accuracy of models trained on the full original datasets.
arXiv Detail & Related papers (2023-12-14T13:19:33Z) - Data Distillation Can Be Like Vodka: Distilling More Times For Better
Quality [78.6359306550245]
We argue that using just one synthetic subset for distillation will not yield optimal generalization performance.
PDD synthesizes multiple small sets of synthetic images, each conditioned on the previous sets, and trains the model on the cumulative union of these subsets.
Our experiments show that PDD can effectively improve the performance of existing dataset distillation methods by up to 4.3%.
arXiv Detail & Related papers (2023-10-10T20:04:44Z) - Dataset Distillation by Matching Training Trajectories [75.9031209877651]
We propose a new formulation that optimize our distilled data to guide networks to a similar state as those trained on real data.
Given a network, we train it for several iterations on our distilled data and optimize the distilled data with respect to the distance between the synthetically trained parameters and the parameters trained on real data.
Our method handily outperforms existing methods and also allows us to distill higher-resolution visual data.
arXiv Detail & Related papers (2022-03-22T17:58:59Z) - New Properties of the Data Distillation Method When Working With Tabular
Data [77.34726150561087]
Data distillation is the problem of reducing the volume oftraining data while keeping only the necessary information.
We show that the model trained on distilled samples can outperform the model trained on the original dataset.
arXiv Detail & Related papers (2020-10-19T20:27:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.