The Game-Theoretic Symbiosis of Trust and AI in Networked Systems
- URL: http://arxiv.org/abs/2411.12859v1
- Date: Tue, 19 Nov 2024 21:04:53 GMT
- Title: The Game-Theoretic Symbiosis of Trust and AI in Networked Systems
- Authors: Yunfei Ge, Quanyan Zhu,
- Abstract summary: This chapter explores the symbiotic relationship between Artificial Intelligence (AI) and trust in networked systems.
We investigate how trust, when dynamically managed through AI, can form a resilient security ecosystem.
- Score: 13.343937277604892
- License:
- Abstract: This chapter explores the symbiotic relationship between Artificial Intelligence (AI) and trust in networked systems, focusing on how these two elements reinforce each other in strategic cybersecurity contexts. AI's capabilities in data processing, learning, and real-time response offer unprecedented support for managing trust in dynamic, complex networks. However, the successful integration of AI also hinges on the trustworthiness of AI systems themselves. Using a game-theoretic framework, this chapter presents approaches to trust evaluation, the strategic role of AI in cybersecurity, and governance frameworks that ensure responsible AI deployment. We investigate how trust, when dynamically managed through AI, can form a resilient security ecosystem. By examining trust as both an AI output and an AI requirement, this chapter sets the foundation for a positive feedback loop where AI enhances network security and the trust placed in AI systems fosters their adoption.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - A Red Teaming Framework for Securing AI in Maritime Autonomous Systems [0.0]
We propose one of the first red team frameworks for evaluating the AI security of maritime autonomous systems.
This framework is a multi-part checklist, which can be tailored to different systems and requirements.
We demonstrate this framework to be highly effective for a red team to use to uncover numerous vulnerabilities within a real-world maritime autonomous systems AI.
arXiv Detail & Related papers (2023-12-08T14:59:07Z) - AI Potentiality and Awareness: A Position Paper from the Perspective of
Human-AI Teaming in Cybersecurity [18.324118502535775]
We argue that human-AI teaming is worthwhile in cybersecurity.
We emphasize the importance of a balanced approach that incorporates AI's computational power with human expertise.
arXiv Detail & Related papers (2023-09-28T01:20:44Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
We examine trust in the context of AI-based systems to understand what it means for an AI system to be trustworthy.
We suggest a trust (resp. zero-trust) model for AI and suggest a set of properties that should be satisfied to ensure the trustworthiness of AI systems.
arXiv Detail & Related papers (2022-06-23T21:13:10Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
We draw from communication theories and literature on trust in technologies to develop a conceptual model called MATCH.
We highlight transparency and interaction as AI systems' affordances that present a wide range of trustworthiness cues to users.
We propose a checklist of requirements to help technology creators identify appropriate cues to use.
arXiv Detail & Related papers (2022-04-29T00:14:33Z) - Confident AI [0.0]
We propose "Confident AI" as a means to designing Artificial Intelligence (AI) and Machine Learning (ML) systems with both algorithm and user confidence in model predictions and reported results.
The 4 basic tenets of Confident AI are Repeatability, Believability, Sufficiency, and Adaptability.
arXiv Detail & Related papers (2022-02-12T02:26:46Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
Many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc.
In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems.
To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems.
arXiv Detail & Related papers (2021-10-04T03:20:39Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.