論文の概要: Puppet-CNN: Input-Adaptive Convolutional Neural Networks with Model Compression using Ordinary Differential Equation
- arxiv url: http://arxiv.org/abs/2411.12876v1
- Date: Tue, 19 Nov 2024 21:44:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:03.853992
- Title: Puppet-CNN: Input-Adaptive Convolutional Neural Networks with Model Compression using Ordinary Differential Equation
- Title(参考訳): Puppet-CNN:正規微分方程式を用いたモデル圧縮を用いた入力適応畳み込みニューラルネットワーク
- Authors: Yucheng Xing, Xin Wang,
- Abstract要約: 我々は2つのモジュールを含む新しいCNNフレームワークを$textitPuppet-CNN$として提案する。
パペットモジュールは、他の作業と同じように入力データを処理するために使用されるCNNモデルである。
人形モジュール内でカーネルパラメータを繰り返し生成することにより、異なる畳み込み層のカーネル間の依存を利用してCNNモデルのサイズを大幅に削減することができる。
- 参考スコア(独自算出の注目度): 5.453850739960517
- License:
- Abstract: Convolutional Neural Network (CNN) has been applied to more and more scenarios due to its excellent performance in many machine learning tasks, especially with deep and complex structures. However, as the network goes deeper, more parameters need to be stored and optimized. Besides, almost all common CNN models adopt "train-and-use" strategy where the structure is pre-defined and the kernel parameters are fixed after the training with the same structure and set of parameters used for all data without considering the content complexity. In this paper, we propose a new CNN framework, named as $\textit{Puppet-CNN}$, which contains two modules: a $\textit{puppet module}$ and a $\textit{puppeteer module}$. The puppet module is a CNN model used to actually process the input data just like other works, but its depth and kernels are generated by the puppeteer module (realized with Ordinary Differential Equation (ODE)) based on the input complexity each time. By recurrently generating kernel parameters in the puppet module, we can take advantage of the dependence among kernels of different convolutional layers to significantly reduce the size of CNN model by only storing and training the parameters of the much smaller puppeteer ODE module. Through experiments on several datasets, our method has proven to be superior than the traditional CNNs on both performance and efficiency. The model size can be reduced more than 10 times.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、多くの機械学習タスク、特に深い複雑な構造における優れたパフォーマンスのために、ますます多くのシナリオに適用されてきた。
しかし、ネットワークが深まるにつれて、より多くのパラメータを保存し、最適化する必要がある。
さらに、ほとんどの一般的なCNNモデルは、構造が事前に定義され、カーネルパラメータがコンテンツ複雑さを考慮せずに、同じ構造と全てのデータに使用されるパラメータのセットでトレーニング後に固定される"train-and-use"戦略を採用している。
本稿では、$\textit{Puppet-CNN}$という新しいCNNフレームワークを提案し、これには、$\textit{puppet module}$と$\textit{puppeteer module}$という2つのモジュールが含まれる。
パペットモジュールは、他の作業と同じように入力データを実際に処理するために使用されるCNNモデルであるが、その深さとカーネルは、入力の複雑さに基づいてパペットモジュール(ODE(Ordinary Differential Equation)で実現)によって生成される。
人形モジュール内でカーネルパラメータを繰り返し生成することにより、異なる畳み込み層のカーネル間の依存を利用して、はるかに小さな人形ODEモジュールのパラメータのみを格納し、トレーニングすることで、CNNモデルのサイズを大幅に削減することができる。
いくつかのデータセットの実験を通して,本手法は従来のCNNよりも性能と効率の両面で優れていることが証明された。
モデルサイズは10倍以上に縮小できる。
関連論文リスト
- Model Parallel Training and Transfer Learning for Convolutional Neural Networks by Domain Decomposition [0.0]
ディープ畳み込みニューラルネットワーク(CNN)は、幅広い画像処理アプリケーションで非常に成功したことが示されている。
モデルパラメータの増大と大量のトレーニングデータの増加により、複雑なCNNを効率的に訓練するための並列化戦略が必要である。
論文 参考訳(メタデータ) (2024-08-26T17:35:01Z) - Reusing Convolutional Neural Network Models through Modularization and
Composition [22.823870645316397]
我々はCNNSplitterとGradSplitterという2つのモジュール化手法を提案する。
CNNSplitterは、トレーニングされた畳み込みニューラルネットワーク(CNN)モデルを、小さな再利用可能なモジュールとして$N$に分解する。
生成されたモジュールは、既存のCNNモデルにパッチを当てたり、コンポジションを通じて新しいCNNモデルを構築するために再利用することができる。
論文 参考訳(メタデータ) (2023-11-08T03:18:49Z) - Decouple Graph Neural Networks: Train Multiple Simple GNNs Simultaneously Instead of One [60.5818387068983]
グラフニューラルネットワーク(GNN)は、深刻な非効率性に悩まされている。
我々は,より効率的なトレーニングを行うために,多層GNNを複数の単純なモジュールとして分離することを提案する。
提案するフレームワークは,合理的な性能で高い効率性を示す。
論文 参考訳(メタデータ) (2023-04-20T07:21:32Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
構造変化のない任意の解像度,次元,長さのタスクに対して,連続的な畳み込みカーネルを備えた単一CNNアーキテクチャを提案する。
1$mathrmD$)とビジュアルデータ(2$mathrmD$)の幅広いタスクに同じCCNNを適用することで、我々のアプローチの汎用性を示す。
私たちのCCNNは競争力があり、検討されたすべてのタスクで現在の最先端を上回ります。
論文 参考訳(メタデータ) (2022-06-07T15:48:02Z) - Exploiting Hybrid Models of Tensor-Train Networks for Spoken Command
Recognition [9.262289183808035]
本研究の目的は,低複雑性音声コマンド認識(SCR)システムの設計である。
我々は、テンソルトレイン(TT)ネットワークの深いハイブリッドアーキテクチャを利用して、エンドツーエンドのSRCパイプラインを構築する。
提案したCNN+(TT-DNN)モデルでは,CNNモデルより4倍少ないモデルパラメータで96.31%の競争精度が得られる。
論文 参考訳(メタデータ) (2022-01-11T05:57:38Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
本稿では,mipソルバの2つのキーサブタスクに学習を適用し,高品質なジョイント変数割当を生成し,その割当と最適課題との客観的値の差を限定する。
提案手法は,ニューラルネットワークに基づく2つのコンポーネントであるニューラルダイバーディングとニューラルブランチを構築し,SCIPなどのベースMIPソルバで使用する。
2つのGoogle生産データセットとMIPLIBを含む6つの現実世界データセットに対するアプローチを評価し、それぞれに別々のニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-12-23T09:33:11Z) - A Token-wise CNN-based Method for Sentence Compression [31.9210679048841]
文圧縮は、原文の短縮とキー情報の保存を目的とした自然言語処理(NLP)タスクである。
現在の手法は主に処理速度の悪いリカレントニューラルネットワーク(RNN)モデルに基づいている。
本稿では,CNN ベースモデルであるトークンワイド・コナールニューラルネットワークと,削除に基づく文圧縮のための事前学習された双方向表現(BERT)機能を提案する。
論文 参考訳(メタデータ) (2020-09-23T17:12:06Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
我々は,CNNにおいて,畳み込みカーネル間の構造正則化を導入する。
我々はCNNがパラメータや計算量を劇的に減らして性能を維持していることを示す。
論文 参考訳(メタデータ) (2020-09-04T20:41:47Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。