論文の概要: MLDGG: Meta-Learning for Domain Generalization on Graphs
- arxiv url: http://arxiv.org/abs/2411.12913v1
- Date: Tue, 19 Nov 2024 22:57:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:03.200836
- Title: MLDGG: Meta-Learning for Domain Generalization on Graphs
- Title(参考訳): MLDGG: グラフ上でのドメインの一般化のためのメタラーニング
- Authors: Qin Tian, Chen Zhao, Minglai Shao, Wenjun Wang, Yujie Lin, Dong Li,
- Abstract要約: グラフ上のドメインの一般化は、堅牢な一般化機能を持つモデルを開発することを目的としている。
我々のフレームワークであるMDDGGは、多分野間メタラーニングを統合することで、多分野にわたる適応可能な一般化を実現する。
実験の結果,MDDGGはベースライン法を超越し,3種類の分散シフト設定で有効性を示した。
- 参考スコア(独自算出の注目度): 9.872254367103057
- License:
- Abstract: Domain generalization on graphs aims to develop models with robust generalization capabilities, ensuring effective performance on the testing set despite disparities between testing and training distributions. However, existing methods often rely on static encoders directly applied to the target domain, constraining its flexible adaptability. In contrast to conventional methodologies, which concentrate on developing specific generalized models, our framework, MLDGG, endeavors to achieve adaptable generalization across diverse domains by integrating cross-multi-domain meta-learning with structure learning and semantic identification. Initially, it introduces a generalized structure learner to mitigate the adverse effects of task-unrelated edges, enhancing the comprehensiveness of representations learned by Graph Neural Networks (GNNs) while capturing shared structural information across domains. Subsequently, a representation learner is designed to disentangle domain-invariant semantic and domain-specific variation information in node embedding by leveraging causal reasoning for semantic identification, further enhancing generalization. In the context of meta-learning, meta-parameters for both learners are optimized to facilitate knowledge transfer and enable effective adaptation to graphs through fine-tuning within the target domains, where target graphs are inaccessible during training. Our empirical results demonstrate that MLDGG surpasses baseline methods, showcasing its effectiveness in three different distribution shift settings.
- Abstract(参考訳): グラフ上のドメインの一般化は、テストとトレーニングディストリビューションの相違にもかかわらず、テストセット上で効果的なパフォーマンスを確保するために、堅牢な一般化機能を持つモデルを開発することを目的としている。
しかし、既存のメソッドは、しばしばターゲットドメインに直接適用される静的エンコーダに依存し、その柔軟な適応性を制限する。
特定の一般化モデルの開発に集中する従来の手法とは対照的に,我々のフレームワークであるMDDGGは,多分野横断メタラーニングと構造学習と意味認識を統合し,多分野にわたる適応可能な一般化を実現する。
当初は、タスク非関連エッジの悪影響を軽減し、グラフニューラルネットワーク(GNN)が学習した表現の包括性を向上し、ドメイン間の共有構造情報をキャプチャする汎用構造学習システムを導入している。
その後、表現学習者は、意味的識別に因果推論を活用することにより、ノード埋め込みにおけるドメイン不変セマンティックとドメイン固有変分情報を解き放つように設計され、さらに一般化が促進される。
メタラーニングの文脈では、両方の学習者のためのメタパラメータが最適化され、学習中にターゲットグラフにアクセスできないターゲット領域内の微調整を通じて、知識伝達を促進し、グラフへの効果的な適応を可能にする。
実験の結果,MDDGGはベースライン法を超越し,3種類の分散シフト設定で有効性を示した。
関連論文リスト
- HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
ドメイン一般化(DG)は、不変の機能を学ぶことによって、目に見えないシナリオに優れた機械学習モデルを作成するための取り組みである。
モデルにドメインレベルとタスク固有の特性を補足する新しい手法を提案する。
このアプローチは、特定の特徴から不変な特徴をより効果的に分離し、一般化を促進することを目的としている。
論文 参考訳(メタデータ) (2024-01-18T04:23:21Z) - MetaDefa: Meta-learning based on Domain Enhancement and Feature
Alignment for Single Domain Generalization [12.095382249996032]
モデル一般化性能を改善するために,ドメイン拡張と特徴アライメント(MetaDefa)に基づくメタラーニング手法を提案する。
本稿では、ソース領域と拡張領域の機能空間間の類似のターゲット領域に着目し、ドメイン不変性について検討する。
公開された2つのデータセットに対する大規模な実験により、MetaDefaは未知の複数のターゲットドメインにおいて、大きな一般化パフォーマンスのアドバンテージを持つことが示された。
論文 参考訳(メタデータ) (2023-11-27T15:13:02Z) - Learning to Augment via Implicit Differentiation for Domain
Generalization [107.9666735637355]
ドメイン一般化(DG)は、複数のソースドメインを活用してドメイン一般化可能なモデルを学ぶことで、この問題を克服することを目的としている。
本稿では,AugLearnと呼ばれる新しい拡張型DG手法を提案する。
AugLearnは、PACS、Office-Home、Digits-DGの3つの標準DGベンチマークで効果を示す。
論文 参考訳(メタデータ) (2022-10-25T18:51:51Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
そこで本研究では,ターゲットドメインとソースがクラスを共有しない顔認識タスクを対象とした,クラスタリングに基づく新しいドメイン適応手法を提案する。
本手法は,特徴領域をグローバルに整列させ,その一方で,対象クラスタを局所的に識別することで,識別対象特徴を効果的に学習する。
論文 参考訳(メタデータ) (2022-05-27T12:29:11Z) - Unsupervised Domain Adaptation for Semantic Segmentation via Low-level
Edge Information Transfer [27.64947077788111]
セマンティックセグメンテーションのための教師なしドメイン適応は、合成データに基づいて訓練されたモデルを実際の画像に適応させることを目的としている。
従来の特徴レベルの対数学習手法は、高レベルの意味的特徴に適応するモデルのみを考慮していた。
本稿では,ドメイン間ギャップが小さい低レベルエッジ情報を明示的に利用して意味情報の伝達をガイドする試みについて紹介する。
論文 参考訳(メタデータ) (2021-09-18T11:51:31Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Discriminative Adversarial Domain Generalization with Meta-learning
based Cross-domain Validation [9.265557367859637]
ドメイン一般化(DG)技術は、機械学習モデルのそのような一般化能力を高めることを目的としている。
メタラーニングに基づくクロスドメイン検証により,DADG(Dariminative Adversarial Domain Generalization)を提案する。
その結果、DADGは強力なベースラインであるDeepAllを一貫して上回り、ほとんどの場合、既存のDGアルゴリズムよりも上回ります。
論文 参考訳(メタデータ) (2020-11-01T07:48:16Z) - Meta-Learning for Domain Generalization in Semantic Parsing [124.32975734073949]
セマンティック解析のためにゼロショットドメインをターゲットにしたメタラーニングフレームワークを使用する。
ゼロショット解析の仮想トレインと非結合領域からのテストセットをシミュレートするモデル非依存のトレーニングアルゴリズムを適用した。
論文 参考訳(メタデータ) (2020-10-22T19:00:36Z) - Learning to Learn with Variational Information Bottleneck for Domain
Generalization [128.90691697063616]
ドメイン一般化モデルは、これまで見つからなかった領域に一般化することを学ぶが、予測の不確実性とドメインシフトに悩まされる。
ドメイン一般化のための確率論的メタラーニングモデルを導入し、ドメイン間で共有されるパラメータを分布としてモデル化する。
ドメインシフトに対処するため、メタ変動情報ボトルネックという提案原則を用いてドメイン不変表現を学習し、メタVIBと呼ぶ。
論文 参考訳(メタデータ) (2020-07-15T12:05:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。