VILA-M3: Enhancing Vision-Language Models with Medical Expert Knowledge
- URL: http://arxiv.org/abs/2411.12915v1
- Date: Tue, 19 Nov 2024 22:59:14 GMT
- Title: VILA-M3: Enhancing Vision-Language Models with Medical Expert Knowledge
- Authors: Vishwesh Nath, Wenqi Li, Dong Yang, Andriy Myronenko, Mingxin Zheng, Yao Lu, Zhijian Liu, Hongxu Yin, Yee Man Law, Yucheng Tang, Pengfei Guo, Can Zhao, Ziyue Xu, Yufan He, Greg Heinrich, Stephen Aylward, Marc Edgar, Michael Zephyr, Pavlo Molchanov, Baris Turkbey, Holger Roth, Daguang Xu,
- Abstract summary: Generalist vision language models (VLMs) have made significant strides in computer vision, but they fall short in specialized fields like healthcare.
In traditional computer vision tasks, creative or approximate answers may be acceptable, but in healthcare, precision is paramount.
This paper introduces a new framework, VILA-M3, for medical VLMs that utilizes domain knowledge via expert models.
- Score: 33.25976241152384
- License:
- Abstract: Generalist vision language models (VLMs) have made significant strides in computer vision, but they fall short in specialized fields like healthcare, where expert knowledge is essential. In traditional computer vision tasks, creative or approximate answers may be acceptable, but in healthcare, precision is paramount.Current large multimodal models like Gemini and GPT-4o are insufficient for medical tasks due to their reliance on memorized internet knowledge rather than the nuanced expertise required in healthcare. VLMs are usually trained in three stages: vision pre-training, vision-language pre-training, and instruction fine-tuning (IFT). IFT has been typically applied using a mixture of generic and healthcare data. In contrast, we propose that for medical VLMs, a fourth stage of specialized IFT is necessary, which focuses on medical data and includes information from domain expert models. Domain expert models developed for medical use are crucial because they are specifically trained for certain clinical tasks, e.g. to detect tumors and classify abnormalities through segmentation and classification, which learn fine-grained features of medical data$-$features that are often too intricate for a VLM to capture effectively especially in radiology. This paper introduces a new framework, VILA-M3, for medical VLMs that utilizes domain knowledge via expert models. Through our experiments, we show an improved state-of-the-art (SOTA) performance with an average improvement of ~9% over the prior SOTA model Med-Gemini and ~6% over models trained on the specific tasks. Our approach emphasizes the importance of domain expertise in creating precise, reliable VLMs for medical applications.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - UltraMedical: Building Specialized Generalists in Biomedicine [40.53028639007486]
We present the UltraMedical collections, which consist of high-quality manual and synthetic datasets in the biomedicine domain.
We fine-tune a suite of specialized medical models based on Llama-3 series, demonstrating breathtaking capabilities across various medical benchmarks.
arXiv Detail & Related papers (2024-06-06T10:50:26Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
We propose a novel framework that tackles both discriminative and generative multimodal medical tasks.
The learning of Med-MoE consists of three steps: multimodal medical alignment, instruction tuning and routing, and domain-specific MoE tuning.
Our model can achieve performance superior to or on par with state-of-the-art baselines.
arXiv Detail & Related papers (2024-04-16T02:35:17Z) - Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case
Study in Medicine [89.46836590149883]
We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training.
We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks.
With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite.
arXiv Detail & Related papers (2023-11-28T03:16:12Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - Knowledge-enhanced Visual-Language Pre-training on Chest Radiology
Images [40.52487429030841]
We propose Knowledge-enhanced Auto Diagnosis (KAD) to guide vision-supervised pre-training using paired chest X-rays and radiology reports.
We evaluate KAD on four external X-ray datasets and demonstrate that its zero-shot performance is superior to that of fully-language models.
arXiv Detail & Related papers (2023-02-27T18:53:10Z) - Medical Image Understanding with Pretrained Vision Language Models: A
Comprehensive Study [8.547751745702156]
We show that well-designed medical prompts are the key to elicit knowledge from pre-trained vision language models (VLM)
We develop three approaches for automatic generation of medical prompts, which can inject expert-level medical knowledge and image-specific information into the prompts for fine-grained grounding.
arXiv Detail & Related papers (2022-09-30T15:06:13Z) - Align, Reason and Learn: Enhancing Medical Vision-and-Language
Pre-training with Knowledge [68.90835997085557]
We propose a systematic and effective approach to enhance structured medical knowledge from three perspectives.
First, we align the representations of the vision encoder and the language encoder through knowledge.
Second, we inject knowledge into the multi-modal fusion model to enable the model to perform reasoning using knowledge as the supplementation of the input image and text.
Third, we guide the model to put emphasis on the most critical information in images and texts by designing knowledge-induced pretext tasks.
arXiv Detail & Related papers (2022-09-15T08:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.