論文の概要: Probably Approximately Precision and Recall Learning
- arxiv url: http://arxiv.org/abs/2411.13029v1
- Date: Wed, 20 Nov 2024 04:21:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:15.911235
- Title: Probably Approximately Precision and Recall Learning
- Title(参考訳): おそらくおよそ精度とリコール学習
- Authors: Lee Cohen, Yishay Mansour, Shay Moran, Han Shao,
- Abstract要約: 精度とリコールは機械学習の基本的な指標である。
一方的なフィードバック – トレーニング中にのみ肯定的な例が観察される – は,多くの実践的な問題に固有のものだ。
PAC学習フレームワークでは,各仮説をグラフで表現し,エッジは肯定的な相互作用を示す。
- 参考スコア(独自算出の注目度): 62.912015491907994
- License:
- Abstract: Precision and Recall are foundational metrics in machine learning where both accurate predictions and comprehensive coverage are essential, such as in recommender systems and multi-label learning. In these tasks, balancing precision (the proportion of relevant items among those predicted) and recall (the proportion of relevant items successfully predicted) is crucial. A key challenge is that one-sided feedback--where only positive examples are observed during training--is inherent in many practical problems. For instance, in recommender systems like YouTube, training data only consists of videos that a user has actively selected, while unselected items remain unseen. Despite this lack of negative feedback in training, avoiding undesirable recommendations at test time is essential. We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions, such as between users and items. This framework subsumes the classical binary and multi-class PAC learning models as well as multi-label learning with partial feedback, where only a single random correct label per example is observed, rather than all correct labels. Our work uncovers a rich statistical and algorithmic landscape, with nuanced boundaries on what can and cannot be learned. Notably, classical methods like Empirical Risk Minimization fail in this setting, even for simple hypothesis classes with only two hypotheses. To address these challenges, we develop novel algorithms that learn exclusively from positive data, effectively minimizing both precision and recall losses. Specifically, in the realizable setting, we design algorithms that achieve optimal sample complexity guarantees. In the agnostic case, we show that it is impossible to achieve additive error guarantees--as is standard in PAC learning--and instead obtain meaningful multiplicative approximations.
- Abstract(参考訳): 精度とリコールは、推奨システムやマルチラベル学習など、正確な予測と包括的なカバレッジの両方が不可欠である機械学習の基本的な指標である。
これらのタスクでは、精度(予測した項目の関連項目の割合)とリコール(予測した項目の関連項目の割合)のバランスが重要である。
重要な課題は、一方的なフィードバック — トレーニング中に肯定的な例だけが観察される — が、多くの実践的な問題に固有のものであることだ。
例えば、YouTubeのようなレコメンデーションシステムでは、トレーニングデータはユーザーが積極的に選択したビデオのみで構成され、未選択のアイテムは見当たらないままである。
このようなトレーニングにおけるネガティブなフィードバックの欠如にもかかわらず、テスト時に望ましくない推奨を避けることが不可欠である。
PAC学習フレームワークでは,各仮説をグラフで表現し,ユーザとアイテム間の肯定的な相互作用を示す。
このフレームワークは、古典的なバイナリおよびマルチクラスPAC学習モデルと、部分的なフィードバックを伴うマルチラベル学習を仮定する。
私たちの研究は、学べることとできないことに関する曖昧な境界を持つ、豊かな統計的、アルゴリズム的な景観を明らかにします。
特に、経験的リスク最小化のような古典的な手法はこの設定で失敗し、2つの仮説しか持たない単純な仮説クラスでさえ失敗する。
これらの課題に対処するため、我々は正のデータのみから学習する新しいアルゴリズムを開発し、精度とリコール損失の両方を効果的に最小化する。
具体的には、実現可能な設定において、最適なサンプル複雑性を保証するアルゴリズムを設計する。
本稿では,PAC学習において標準となる付加的誤り保証を実現することは不可能であり,代わりに有意義な乗法近似が得られることを示す。
関連論文リスト
- Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - Joint empirical risk minimization for instance-dependent
positive-unlabeled data [4.112909937203119]
正とラベルなしのデータ(PU学習)からの学習は、機械学習のタスクとして積極的に研究されている。
目標は、ラベル付きインスタンスとラベルなしインスタンスの一部を含むデータセットに基づいて、バイナリ分類モデルをトレーニングすることだ。
ラベルなし集合は、残りの部分の正と全ての負の観察を含む。
論文 参考訳(メタデータ) (2023-12-27T12:45:12Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
補完ラベル学習は、弱教師付き学習問題である。
均一分布仮定に依存しない一貫したアプローチを提案する。
相補的なラベル学習は、負のラベル付きバイナリ分類問題の集合として表現できる。
論文 参考訳(メタデータ) (2023-11-27T02:59:17Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - Learnability, Sample Complexity, and Hypothesis Class Complexity for
Regression Models [10.66048003460524]
この研究はPACの基礎に触発され、既存の回帰学習問題に動機付けられている。
提案手法はEpsilon-Confidence Aough Correct (epsilon CoAC)で示され、Kullback Leibler divergence(相対エントロピー)を利用する。
これにより、学習者は異なる複雑性順序の仮説クラスを比較でき、それらの中から最小のエプシロンを最適に選択できる。
論文 参考訳(メタデータ) (2023-03-28T15:59:12Z) - Improved Robust Algorithms for Learning with Discriminative Feature
Feedback [21.58493386054356]
識別的特徴フィードバック(英: Discriminative Feature Feedback)は、人間の教師によって提供される特徴説明に基づく対話型学習のためのプロトコルである。
我々は、識別的特徴フィードバックモデルのための、新しい堅牢な対話型学習アルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-09-08T12:11:12Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
言語モデルは、テキストコーパスの教師なしトレーニングからさまざまな能力を学ぶことができる。
人間がラベル付きデータを提供するよりも選択肢を選択する方が簡単であり、事前の作業はそのような選好比較から報酬モデルをトレーニングすることで最先端のパフォーマンスを達成した。
能動的学習とリスク-逆強化学習を用いてサンプル効率とロバスト性を向上させる不確実性推定によるこれらの問題に対処することを模索する。
論文 参考訳(メタデータ) (2022-03-14T20:13:21Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
本稿では,D-BAT(Diversity-By-dis-Agreement Training)を提案する。
我々は、D-BATが一般化された相違の概念から自然に現れることを示す。
論文 参考訳(メタデータ) (2022-02-09T12:03:02Z) - Learning with Proper Partial Labels [87.65718705642819]
部分ラベル学習は、不正確なラベルを持つ弱い教師付き学習の一種である。
この適切な部分ラベル学習フレームワークには,従来の部分ラベル学習設定が数多く含まれていることを示す。
次に、分類リスクの統一的非バイアス推定器を導出する。
論文 参考訳(メタデータ) (2021-12-23T01:37:03Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。