Practical Compact Deep Compressed Sensing
- URL: http://arxiv.org/abs/2411.13081v1
- Date: Wed, 20 Nov 2024 07:17:16 GMT
- Title: Practical Compact Deep Compressed Sensing
- Authors: Bin Chen, Jian Zhang,
- Abstract summary: We propose a new practical and compact network dubbed PCNet for general image CS.
In PCNet, a novel collaborative sampling operator is designed, which consists of a deep conditional filtering step and a dual-branch fast sampling step.
Our PCNet is equipped with an enhanced gradient descent algorithm-unrolled network for reconstruction.
- Score: 9.747987976900085
- License:
- Abstract: Recent years have witnessed the success of deep networks in compressed sensing (CS), which allows for a significant reduction in sampling cost and has gained growing attention since its inception. In this paper, we propose a new practical and compact network dubbed PCNet for general image CS. Specifically, in PCNet, a novel collaborative sampling operator is designed, which consists of a deep conditional filtering step and a dual-branch fast sampling step. The former learns an implicit representation of a linear transformation matrix into a few convolutions and first performs adaptive local filtering on the input image, while the latter then uses a discrete cosine transform and a scrambled block-diagonal Gaussian matrix to generate under-sampled measurements. Our PCNet is equipped with an enhanced proximal gradient descent algorithm-unrolled network for reconstruction. It offers flexibility, interpretability, and strong recovery performance for arbitrary sampling rates once trained. Additionally, we provide a deployment-oriented extraction scheme for single-pixel CS imaging systems, which allows for the convenient conversion of any linear sampling operator to its matrix form to be loaded onto hardware like digital micro-mirror devices. Extensive experiments on natural image CS, quantized CS, and self-supervised CS demonstrate the superior reconstruction accuracy and generalization ability of PCNet compared to existing state-of-the-art methods, particularly for high-resolution images. Code is available at https://github.com/Guaishou74851/PCNet.
Related papers
- Variable-size Symmetry-based Graph Fourier Transforms for image compression [65.7352685872625]
We propose a new family of Symmetry-based Graph Fourier Transforms of variable sizes into a coding framework.
Our proposed algorithm generates symmetric graphs on the grid by adding specific symmetrical connections between nodes.
Experiments show that SBGFTs outperform the primary transforms integrated in the explicit Multiple Transform Selection.
arXiv Detail & Related papers (2024-11-24T13:00:44Z) - Onboard deep lossless and near-lossless predictive coding of hyperspectral images with line-based attention [24.876399066519294]
In this paper, we design a neural network, called LineRWKV, that works iteratively line-by-line to limit memory consumption.
Experiments on the HySpecNet-11k dataset and PRISMA images show that LineRWKV is the first deep-learning method to outperform CCSDS-123.0-B-2.
Promising throughput results are also evaluated on a 7W embedded system.
arXiv Detail & Related papers (2024-03-26T13:05:02Z) - Deep Network for Image Compressed Sensing Coding Using Local Structural
Sampling [37.10939114542612]
We propose a new CNN based image CS coding framework using local structural sampling (dubbed CSCNet)
In the proposed framework, instead of GRM, a new local structural sampling matrix is first developed.
The measurements with high correlations are produced, which are then coded into final bitstreams by the third-party image.
arXiv Detail & Related papers (2024-02-29T12:43:28Z) - MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods.
We develop an interpretable and concise neural network model for reconstructing natural images using CS.
The model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods.
arXiv Detail & Related papers (2024-01-05T16:25:58Z) - AICT: An Adaptive Image Compression Transformer [18.05997169440533]
We propose a more straightforward yet effective Tranformer-based channel-wise auto-regressive prior model, resulting in an absolute image compression transformer (ICT)
The proposed ICT can capture both global and local contexts from the latent representations.
We leverage a learnable scaling module with a sandwich ConvNeXt-based pre/post-processor to accurately extract more compact latent representation.
arXiv Detail & Related papers (2023-07-12T11:32:02Z) - One-Dimensional Deep Image Prior for Curve Fitting of S-Parameters from
Electromagnetic Solvers [57.441926088870325]
Deep Image Prior (DIP) is a technique that optimized the weights of a randomly-d convolutional neural network to fit a signal from noisy or under-determined measurements.
Relative to publicly available implementations of Vector Fitting (VF), our method shows superior performance on nearly all test examples.
arXiv Detail & Related papers (2023-06-06T20:28:37Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Content-aware Scalable Deep Compressed Sensing [8.865549833627794]
We present a novel content-aware scalable network dubbed CASNet to address image compressed sensing problems.
We first adopt a data-driven saliency detector to evaluate the importances of different image regions and propose a saliency-based block ratio aggregation (BRA) strategy for sampling rate allocation.
To accelerate training convergence and improve network robustness, we propose an SVD-based scheme and a random transformation enhancement (RTE) strategy.
arXiv Detail & Related papers (2022-07-19T14:59:14Z) - A new perspective on probabilistic image modeling [92.89846887298852]
We present a new probabilistic approach for image modeling capable of density estimation, sampling and tractable inference.
DCGMMs can be trained end-to-end by SGD from random initial conditions, much like CNNs.
We show that DCGMMs compare favorably to several recent PC and SPN models in terms of inference, classification and sampling.
arXiv Detail & Related papers (2022-03-21T14:53:57Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.