論文の概要: TAPT: Test-Time Adversarial Prompt Tuning for Robust Inference in Vision-Language Models
- arxiv url: http://arxiv.org/abs/2411.13136v1
- Date: Wed, 20 Nov 2024 08:58:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:10.295944
- Title: TAPT: Test-Time Adversarial Prompt Tuning for Robust Inference in Vision-Language Models
- Title(参考訳): TAPT:視覚言語モデルにおけるロバスト推論のためのテスト時間反転プロンプトチューニング
- Authors: Xin Wang, Kai Chen, Jiaming Zhang, Jingjing Chen, Xingjun Ma,
- Abstract要約: 視覚的対人攻撃に対するCLIPの推論ロバスト性を高めるため, TAPT(Test-Time Adversarial Prompt Tuning)と呼ばれる新しい防御手法を提案する。
TAPTは、CLIPの推論プロセスを堅牢化するために、防御的バイモーダル(テキストと視覚)のプロンプトを学習するテストタイムディフェンス手法である。
我々は、ImageNetなど10のゼロショットデータセットを含む11のベンチマークデータセットに対するTAPTの有効性を評価する。
- 参考スコア(独自算出の注目度): 53.91006249339802
- License:
- Abstract: Large pre-trained Vision-Language Models (VLMs) such as CLIP have demonstrated excellent zero-shot generalizability across various downstream tasks. However, recent studies have shown that the inference performance of CLIP can be greatly degraded by small adversarial perturbations, especially its visual modality, posing significant safety threats. To mitigate this vulnerability, in this paper, we propose a novel defense method called Test-Time Adversarial Prompt Tuning (TAPT) to enhance the inference robustness of CLIP against visual adversarial attacks. TAPT is a test-time defense method that learns defensive bimodal (textual and visual) prompts to robustify the inference process of CLIP. Specifically, it is an unsupervised method that optimizes the defensive prompts for each test sample by minimizing a multi-view entropy and aligning adversarial-clean distributions. We evaluate the effectiveness of TAPT on 11 benchmark datasets, including ImageNet and 10 other zero-shot datasets, demonstrating that it enhances the zero-shot adversarial robustness of the original CLIP by at least 48.9% against AutoAttack (AA), while largely maintaining performance on clean examples. Moreover, TAPT outperforms existing adversarial prompt tuning methods across various backbones, achieving an average robustness improvement of at least 36.6%.
- Abstract(参考訳): CLIPのような事前訓練された視覚言語モデル(VLM)は、様々な下流タスクにおいて優れたゼロショット一般化性を示している。
しかし、最近の研究では、CLIPの推論性能は、小さな対向摂動、特に視覚的モダリティによって大幅に低下し、重大な安全性の脅威が生じることが示されている。
本稿では,この脆弱性を軽減するために,CLIPの視覚的敵攻撃に対する推論ロバスト性を高めるために,TAPT(Test-Time Adversarial Prompt Tuning)と呼ばれる新しい防御手法を提案する。
TAPTは、CLIPの推論プロセスを堅牢化するために、防御的バイモーダル(テキストと視覚)のプロンプトを学習するテストタイムディフェンス手法である。
具体的には,多視点エントロピーを最小化し,対向クリーン分布の整列を最小化することにより,各試験試料に対する防御プロンプトを最適化する教師なし手法である。
ImageNetなど10のゼロショットデータセットを含む11のベンチマークデータセットに対するTAPTの有効性を評価し、クリーンな例ではパフォーマンスをほぼ維持しつつ、少なくともAutoAttack(AA)に対して、オリジナルのCLIPのゼロショット対逆ロバスト性を48.9%向上させることを実証した。
さらに、TAPTは、様々なバックボーンにまたがる既存の敵のプロンプトチューニング方法よりも優れており、少なくとも36.6%の平均ロバスト性向上を実現している。
関連論文リスト
- Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation [21.20806568508201]
テスト時推論において視覚言語モデル(VLM)が遭遇する分布ドリフトを軽減するために,クラステキスト情報を活用する方法を示す。
本稿では,ラベル割り当て問題の固定セントロイドとしてジェネリッククラステキスト埋め込みを利用して,テスト時間サンプルの擬似ラベルを生成することを提案する。
多様な複雑性を示す複数の人気のあるテスト時間適応ベンチマークの実験は、CLIP-OTの優位性を実証的に示している。
論文 参考訳(メタデータ) (2024-11-26T00:15:37Z) - CleanerCLIP: Fine-grained Counterfactual Semantic Augmentation for Backdoor Defense in Contrastive Learning [53.766434746801366]
バックドアトリガの特徴的接続を遮断するための細粒な textbfText textbfAlignment textbfCleaner (TA-Cleaner) を提案する。
TA-Cleanerは、ファインタニングベースの防御技術の中で最先端の防御性を達成している。
論文 参考訳(メタデータ) (2024-09-26T07:35:23Z) - BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models [20.88680592729709]
本稿では,視覚言語モデルの試験時間適応のためのバックプロパゲーションフリーアルゴリズムBaFTAを提案する。
BaFTAは、投影された埋め込み空間内のオンラインクラスタリングを使用して、クラスセントロイドを直接推定する。
我々は,BaFTAが最先端の試験時間適応手法を効率と効率の両方で一貫して上回っていることを実証した。
論文 参考訳(メタデータ) (2024-06-17T08:16:24Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - Robust Feature Inference: A Test-time Defense Strategy using Spectral Projections [12.807619042576018]
我々はロバスト特徴推論(RFI)と呼ばれる新しいテスト時間防衛戦略を提案する。
RFIは、追加のテスト時間計算なしで既存の(ロバストな)トレーニング手順と簡単に統合できる。
RFIは、適応攻撃や転送攻撃によるロバスト性を継続的に改善することを示す。
論文 参考訳(メタデータ) (2023-07-21T16:18:58Z) - Visual Prompting for Adversarial Robustness [63.89295305670113]
我々は、視覚的プロンプト計算を用いて、テスト時に固定された事前訓練されたモデルの対向ロバスト性を改善する。
本稿では,クラスワイズビジュアルプロンプトを生成するために,クラスワイズビジュアルプロンプト(C-AVP)と呼ばれる新しいVP手法を提案する。
C-AVPは従来のVP法よりも2.1倍の精度向上、2倍の堅牢な精度向上を実現している。
論文 参考訳(メタデータ) (2022-10-12T15:06:07Z) - When Does Contrastive Learning Preserve Adversarial Robustness from
Pretraining to Finetuning? [99.4914671654374]
本稿では,新しい逆比較事前学習フレームワークAdvCLを提案する。
本稿では,AdvCLがモデル精度と微調整効率を損なうことなく,タスク間の堅牢性伝達性を向上できることを示す。
論文 参考訳(メタデータ) (2021-11-01T17:59:43Z) - Understanding and Achieving Efficient Robustness with Adversarial
Contrastive Learning [34.97017489872795]
Adversarial Supervised Contrastive Learning (ASCL)アプローチは、堅牢な精度の観点から最先端の防御を2.6%$上回る。
提案された選択戦略を持つASCLは、選択戦略なしでASCLと比較してわずか4,2.8%のプラスと6.3%のマイナスでさらに1.4%$改善を得ることができます。
論文 参考訳(メタデータ) (2021-01-25T11:57:52Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。