Stochastic Gradient Descent in Non-Convex Problems: Asymptotic Convergence with Relaxed Step-Size via Stopping Time Methods
- URL: http://arxiv.org/abs/2504.12601v1
- Date: Thu, 17 Apr 2025 02:56:20 GMT
- Title: Stochastic Gradient Descent in Non-Convex Problems: Asymptotic Convergence with Relaxed Step-Size via Stopping Time Methods
- Authors: Ruinan Jin, Difei Cheng, Hong Qiao, Xin Shi, Shaodong Liu, Bo Zhang,
- Abstract summary: Gradient Descent (SGD) is widely used in machine learning research.<n>This paper introduces a novel analytical method for convergence analysis of SGD under more relaxed step-size conditions.
- Score: 13.677904140815386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic Gradient Descent (SGD) is widely used in machine learning research. Previous convergence analyses of SGD under the vanishing step-size setting typically require Robbins-Monro conditions. However, in practice, a wider variety of step-size schemes are frequently employed, yet existing convergence results remain limited and often rely on strong assumptions. This paper bridges this gap by introducing a novel analytical framework based on a stopping-time method, enabling asymptotic convergence analysis of SGD under more relaxed step-size conditions and weaker assumptions. In the non-convex setting, we prove the almost sure convergence of SGD iterates for step-sizes $ \{ \epsilon_t \}_{t \geq 1} $ satisfying $\sum_{t=1}^{+\infty} \epsilon_t = +\infty$ and $\sum_{t=1}^{+\infty} \epsilon_t^p < +\infty$ for some $p > 2$. Compared with previous studies, our analysis eliminates the global Lipschitz continuity assumption on the loss function and relaxes the boundedness requirements for higher-order moments of stochastic gradients. Building upon the almost sure convergence results, we further establish $L_2$ convergence. These significantly relaxed assumptions make our theoretical results more general, thereby enhancing their applicability in practical scenarios.
Related papers
- A Unified Analysis for Finite Weight Averaging [50.75116992029417]
Averaging iterations of Gradient Descent (SGD) have achieved empirical success in training deep learning models, such as Weight Averaging (SWA), Exponential Moving Average (EMA), and LAtest Weight Averaging (LAWA)
In this paper, we generalize LAWA as Finite Weight Averaging (FWA) and explain their advantages compared to SGD from the perspective of optimization and generalization.
arXiv Detail & Related papers (2024-11-20T10:08:22Z) - Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation [51.248784084461334]
We prove new convergence rates for a generalized version of Nesterov acceleration underrho conditions.
Our analysis reduces the dependence on the strong growth constant from $$ to $sqrt$ as compared to prior work.
arXiv Detail & Related papers (2024-04-03T00:41:19Z) - Revisiting the Last-Iterate Convergence of Stochastic Gradient Methods [25.831462008050387]
The Gradient Descent (SGD) algorithm has triggered people's interest due to its good performance in practice but lack of theoretical understanding.
It still remains unclear whether the lastiterate convergence can be provably extended to wider composite optimization and non-Euclidean norms.
arXiv Detail & Related papers (2023-12-13T21:41:06Z) - High-probability Convergence Bounds for Nonlinear Stochastic Gradient Descent Under Heavy-tailed Noise [59.25598762373543]
We show that wetailed high-prob convergence guarantees of learning on streaming data in the presence of heavy-tailed noise.
We demonstrate analytically and that $ta$ can be used to the preferred choice of setting for a given problem.
arXiv Detail & Related papers (2023-10-28T18:53:41Z) - Demystifying the Myths and Legends of Nonconvex Convergence of SGD [17.445810977264067]
gradient descent (SGD) and its variants are the main workhorses for solving large-scale optimization problems.
As our analyses, we addressed certain myths and legends related to the non convergence of the gradient.
arXiv Detail & Related papers (2023-10-19T17:58:59Z) - Empirical Risk Minimization with Shuffled SGD: A Primal-Dual Perspective
and Improved Bounds [12.699376765058137]
gradient descent (SGD) is perhaps the most prevalent optimization method in modern machine learning.
It is only very recently that SGD with sampling without replacement -- shuffled SGD -- has been analyzed.
We prove fine-grained complexity bounds that depend on the data matrix and are never worse than what is predicted by the existing bounds.
arXiv Detail & Related papers (2023-06-21T18:14:44Z) - Lower Generalization Bounds for GD and SGD in Smooth Stochastic Convex
Optimization [9.019243171993553]
Training steps $T$ and step-size $eta$ might affect certify in smooth convex optimization (SCO) problems.
We first provide tight excess risk lower bounds for Gradient Descent (GD) and Gradient Descent (SGD)
Recent works show better rates can be attained but the improvement is reduced when training time is long.
arXiv Detail & Related papers (2023-03-19T20:24:33Z) - Benign Underfitting of Stochastic Gradient Descent [72.38051710389732]
We study to what extent may gradient descent (SGD) be understood as a "conventional" learning rule that achieves generalization performance by obtaining a good fit training data.
We analyze the closely related with-replacement SGD, for which an analogous phenomenon does not occur and prove that its population risk does in fact converge at the optimal rate.
arXiv Detail & Related papers (2022-02-27T13:25:01Z) - Last Iterate Risk Bounds of SGD with Decaying Stepsize for
Overparameterized Linear Regression [122.70478935214128]
gradient descent (SGD) has been demonstrated to generalize well in many deep learning applications.
This paper provides problem-dependent analysis on the last iterate risk bounds of SGD with decaying stepsize.
arXiv Detail & Related papers (2021-10-12T17:49:54Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - Better Theory for SGD in the Nonconvex World [2.6397379133308214]
Large-scale non optimization problems are ubiquitous in modern machine learning.
We perform experiments on the effects of a wide array of synthetic minibatch sizes on the Gradient Descent (SG) problem.
arXiv Detail & Related papers (2020-02-09T09:56:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.