論文の概要: Cross-Camera Distracted Driver Classification through Feature Disentanglement and Contrastive Learning
- arxiv url: http://arxiv.org/abs/2411.13181v1
- Date: Wed, 20 Nov 2024 10:27:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:47.376054
- Title: Cross-Camera Distracted Driver Classification through Feature Disentanglement and Contrastive Learning
- Title(参考訳): 特徴分散とコントラスト学習によるクロスカメラ抽出ドライバ分類
- Authors: Simone Bianco, Luigi Celona, Paolo Napoletano,
- Abstract要約: 車両内のカメラ位置の変化に耐えられるような頑健なモデルを導入する。
我々のドライバ行動監視ネットワーク(DBMNet)は軽量なバックボーンに依存し、アンタングルメントモジュールを統合する。
100-Driverデータセットの夜間および夜間のサブセットで行った実験は、我々のアプローチの有効性を検証した。
- 参考スコア(独自算出の注目度): 13.613407983544427
- License:
- Abstract: The classification of distracted drivers is pivotal for ensuring safe driving. Previous studies demonstrated the effectiveness of neural networks in automatically predicting driver distraction, fatigue, and potential hazards. However, recent research has uncovered a significant loss of accuracy in these models when applied to samples acquired under conditions that differ from the training data. In this paper, we introduce a robust model designed to withstand changes in camera position within the vehicle. Our Driver Behavior Monitoring Network (DBMNet) relies on a lightweight backbone and integrates a disentanglement module to discard camera view information from features, coupled with contrastive learning to enhance the encoding of various driver actions. Experiments conducted on the daytime and nighttime subsets of the 100-Driver dataset validate the effectiveness of our approach with an increment on average of 9\% in Top-1 accuracy in comparison with the state of the art. In addition, cross-dataset and cross-camera experiments conducted on three benchmark datasets, namely AUCDD-V1, EZZ2021 and SFD, demonstrate the superior generalization capability of the proposed method.
- Abstract(参考訳): 注意散らされたドライバーの分類は安全な運転を確保するために重要である。
以前の研究では、ドライバーの邪魔、疲労、潜在的な危険を自動的に予測するニューラルネットワークの有効性が示されていた。
しかし、最近の研究では、トレーニングデータとは異なる条件下で得られたサンプルに適用した場合、これらのモデルの精度が著しく低下していることが判明した。
本稿では車内カメラ位置の変化に耐えられる頑健なモデルを提案する。
我々のドライバ行動監視ネットワーク(DBMNet)は軽量なバックボーンに依存しており、カメラビュー情報を特徴から切り離すためのアンタングルモジュールと、さまざまなドライバアクションのエンコーディングを強化するためのコントラスト学習を統合している。
100-Driverデータセットの夜間および夜間のサブセットで行った実験は、最先端と比較して平均9倍の精度でアプローチの有効性を検証した。
さらに,AUCDD-V1,EZZ2021,SFDの3つのベンチマークデータセットを用いて,クロスデータセットおよびクロスカメラ実験を行った。
関連論文リスト
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - Real-time Accident Anticipation for Autonomous Driving Through Monocular Depth-Enhanced 3D Modeling [18.071748815365005]
我々は、現在のSOTA(State-of-the-art)2Dベースの手法を超えて予測能力を著しく向上させる革新的なフレームワークであるAccNetを導入する。
本稿では,交通事故データセットにおけるスキュードデータ分散の課題に対処するため,早期予測のためのバイナリ適応損失(BA-LEA)を提案する。
論文 参考訳(メタデータ) (2024-09-02T13:46:25Z) - Federated Learning for Drowsiness Detection in Connected Vehicles [0.19116784879310028]
ドライバー監視システムは、ドライバーの状態を決定するのを助けることができる。
ドライバーの眠気検出は潜在的な解決策を示す。
モデルトレーニングのためにデータを中央マシンに送信するのは、大規模なデータサイズとプライバシの懸念のため、現実的ではありません。
本稿では,YawDDデータセットを活用して,車両ネットワーク内での眠気検出のためのフェデレート学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-06T09:39:13Z) - PoseViNet: Distracted Driver Action Recognition Framework Using
Multi-View Pose Estimation and Vision Transformer [1.319058156672392]
本稿では,多視点運転者行動画像を用いた運転者の気晴らし検出手法を提案する。
提案手法は,ポーズ推定とアクション推論,すなわち PoseViNet を用いた視覚変換器ベースのフレームワークである。
PoseViNetは、難しいデータセットで97.55%の検証精度と90.92%のテスト精度を達成する。
論文 参考訳(メタデータ) (2023-12-22T10:13:10Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - Modified Supervised Contrastive Learning for Detecting Anomalous Driving
Behaviours [1.4544109317472054]
我々はこの問題を教師付きコントラスト学習アプローチとして定式化し、視覚表現を学習し、正常で見えず異常な運転行動を検出する。
本研究は,31名の運転者の正常運転行動と異常運転行動の783分間のビデオ記録を含む運転異常検出データセットに示す。
論文 参考訳(メタデータ) (2021-09-09T03:50:19Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - Driver2vec: Driver Identification from Automotive Data [44.84876493736275]
Driver2vecは、センサーデータの短い10秒間隔からドライバを正確に識別することができる。
Driver2vecは、Nervtechが提供する51人のドライバーのデータセットでトレーニングされている。
論文 参考訳(メタデータ) (2021-02-10T03:09:13Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
ハンドヘルド環境に現れる複雑な自我運動が,学習深度にとって重要な障害であることが確認された。
本稿では,相対回転を除去してトレーニング画像の修正を効果的に行うデータ前処理手法を提案する。
その結果、従来の教師なしSOTA法よりも、難易度の高いNYUv2データセットよりも優れていた。
論文 参考訳(メタデータ) (2020-06-04T08:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。