Cross-Camera Distracted Driver Classification through Feature Disentanglement and Contrastive Learning
- URL: http://arxiv.org/abs/2411.13181v1
- Date: Wed, 20 Nov 2024 10:27:12 GMT
- Title: Cross-Camera Distracted Driver Classification through Feature Disentanglement and Contrastive Learning
- Authors: Simone Bianco, Luigi Celona, Paolo Napoletano,
- Abstract summary: We introduce a robust model designed to withstand changes in camera position within the vehicle.
Our Driver Behavior Monitoring Network (DBMNet) relies on a lightweight backbone and integrates a disentanglement module.
Experiments conducted on the daytime and nighttime subsets of the 100-Driver dataset validate the effectiveness of our approach.
- Score: 13.613407983544427
- License:
- Abstract: The classification of distracted drivers is pivotal for ensuring safe driving. Previous studies demonstrated the effectiveness of neural networks in automatically predicting driver distraction, fatigue, and potential hazards. However, recent research has uncovered a significant loss of accuracy in these models when applied to samples acquired under conditions that differ from the training data. In this paper, we introduce a robust model designed to withstand changes in camera position within the vehicle. Our Driver Behavior Monitoring Network (DBMNet) relies on a lightweight backbone and integrates a disentanglement module to discard camera view information from features, coupled with contrastive learning to enhance the encoding of various driver actions. Experiments conducted on the daytime and nighttime subsets of the 100-Driver dataset validate the effectiveness of our approach with an increment on average of 9\% in Top-1 accuracy in comparison with the state of the art. In addition, cross-dataset and cross-camera experiments conducted on three benchmark datasets, namely AUCDD-V1, EZZ2021 and SFD, demonstrate the superior generalization capability of the proposed method.
Related papers
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approaches to semi-supervised learning adopt a teacher-student framework.
We leverage pre-trained motion-forecasting models to generate object trajectories on pseudo-labeled data.
Our approach improves pseudo-label quality in two distinct manners.
arXiv Detail & Related papers (2024-09-17T05:35:00Z) - Real-time Accident Anticipation for Autonomous Driving Through Monocular Depth-Enhanced 3D Modeling [18.071748815365005]
We introduce an innovative framework, AccNet, which significantly advances the prediction capabilities beyond the current state-of-the-art (SOTA) 2D-based methods.
We propose the Binary Adaptive Loss for Early Anticipation (BA-LEA) to address the prevalent challenge of skewed data distribution in traffic accident datasets.
arXiv Detail & Related papers (2024-09-02T13:46:25Z) - Federated Learning for Drowsiness Detection in Connected Vehicles [0.19116784879310028]
Driver monitoring systems can assist in determining the driver's state.
Driver drowsiness detection presents a potential solution.
transmitting the data to a central machine for model training is impractical due to the large data size and privacy concerns.
We propose a federated learning framework for drowsiness detection within a vehicular network, leveraging the YawDD dataset.
arXiv Detail & Related papers (2024-05-06T09:39:13Z) - PoseViNet: Distracted Driver Action Recognition Framework Using
Multi-View Pose Estimation and Vision Transformer [1.319058156672392]
This paper introduces a novel method for detection of driver distraction using multi-view driver action images.
The proposed method is a vision transformer-based framework with pose estimation and action inference, namely PoseViNet.
The PoseViNet achieves 97.55% validation accuracy and 90.92% testing accuracy with the challenging dataset.
arXiv Detail & Related papers (2023-12-22T10:13:10Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Modified Supervised Contrastive Learning for Detecting Anomalous Driving
Behaviours [1.4544109317472054]
We formulate this problem as a supervised contrastive learning approach to learn a visual representation to detect normal, and seen and unseen anomalous driving behaviours.
We show our results on a Driver Anomaly Detection dataset that contains 783 minutes of video recordings of normal and anomalous driving behaviours of 31 drivers.
arXiv Detail & Related papers (2021-09-09T03:50:19Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - Driver2vec: Driver Identification from Automotive Data [44.84876493736275]
Driver2vec is able to accurately identify the driver from a short 10-second interval of sensor data.
Driver2vec is trained on a dataset of 51 drivers provided by Nervtech.
arXiv Detail & Related papers (2021-02-10T03:09:13Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
We establish that the complex ego-motions exhibited in handheld settings are a critical obstacle for learning depth.
We propose a data pre-processing method that rectifies training images by removing their relative rotations for effective learning.
Our results outperform the previous unsupervised SOTA method by a large margin on the challenging NYUv2 dataset.
arXiv Detail & Related papers (2020-06-04T08:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.