Intensity-Spatial Dual Masked Autoencoder for Multi-Scale Feature Learning in Chest CT Segmentation
- URL: http://arxiv.org/abs/2411.13198v1
- Date: Wed, 20 Nov 2024 10:58:47 GMT
- Title: Intensity-Spatial Dual Masked Autoencoder for Multi-Scale Feature Learning in Chest CT Segmentation
- Authors: Yuexing Ding, Jun Wang, Hongbing Lyu,
- Abstract summary: This paper proposes an improved method named Intensity-Spatial Dual Masked AutoEncoder (ISD-MAE)
The model utilizes a dual-branch structure and contrastive learning to enhance the ability to learn tissue features and boundary details.
The results show that ISD-MAE significantly outperforms other methods in 2D pneumonia and mediastinal tumor segmentation tasks.
- Score: 4.916334618361524
- License:
- Abstract: In the field of medical image segmentation, challenges such as indistinct lesion features, ambiguous boundaries,and multi-scale characteristics have long revailed. This paper proposes an improved method named Intensity-Spatial Dual Masked AutoEncoder (ISD-MAE). Based on the tissue-contrast semi-masked autoencoder, a Masked AutoEncoder (MAE) branch is introduced to perform intensity masking and spatial masking operations on chest CT images for multi-scale feature learning and segmentation tasks. The model utilizes a dual-branch structure and contrastive learning to enhance the ability to learn tissue features and boundary details. Experiments are conducted on multiple 2D and 3D datasets. The results show that ISD-MAE significantly outperforms other methods in 2D pneumonia and mediastinal tumor segmentation tasks. For example, the Dice score reaches 90.10% on the COVID19 LESION dataset, and the performance is relatively stable. However, there is still room for improvement on 3D datasets. In response to this, improvement directions are proposed, including optimizing the loss function, using enhanced 3D convolution blocks, and processing datasets from multiple perspectives.Our code is available at:https://github.com/prowontheus/ISD-MAE.
Related papers
- MOSformer: Momentum encoder-based inter-slice fusion transformer for
medical image segmentation [15.94370954641629]
2.5D-based segmentation models often treat each slice equally, failing to effectively learn and exploit inter-slice information.
A novel Momentum encoder-based inter-slice fusion transformer (MOSformer) is proposed to overcome this issue.
The MOSformer is evaluated on three benchmark datasets (Synapse, ACDC, and AMOS), establishing a new state-of-the-art with 85.63%, 92.19%, and 85.43% of DSC, respectively.
arXiv Detail & Related papers (2024-01-22T11:25:59Z) - E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D
Medical Image Segmentation [36.367368163120794]
We propose a 3D medical image segmentation model, named Efficient to Efficient Network (E2ENet)
It incorporates two parametrically and computationally efficient designs.
It consistently achieves a superior trade-off between accuracy and efficiency across various resource constraints.
arXiv Detail & Related papers (2023-12-07T22:13:37Z) - Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retinal OCT Images with Full
and Sparse Annotations [32.69359482975795]
This work presents a novel framework based on hybrid 2D-3D convolutional neural networks (CNNs) to obtain continuous 3D retinal layer surfaces from OCT volumes.
Experiments on a synthetic dataset and three public clinical datasets show that our framework can effectively align the B-scans for potential motion correction.
arXiv Detail & Related papers (2023-12-04T08:32:31Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
We propose a new 2D-based model dubbed Slice SHift UNet which encodes three-dimensional features at 2D CNN's complexity.
More precisely multi-view features are collaboratively learned by performing 2D convolutions along the three planes of a volume.
The effectiveness of our approach is validated in Multi-Modality Abdominal Multi-Organ axis (AMOS) and Multi-Atlas Labeling Beyond the Cranial Vault (BTCV) datasets.
arXiv Detail & Related papers (2023-07-24T14:53:23Z) - Self-supervised learning via inter-modal reconstruction and feature
projection networks for label-efficient 3D-to-2D segmentation [4.5206601127476445]
We propose a novel convolutional neural network (CNN) and self-supervised learning (SSL) method for label-efficient 3D-to-2D segmentation.
Results on different datasets demonstrate that the proposed CNN significantly improves the state of the art in scenarios with limited labeled data by up to 8% in Dice score.
arXiv Detail & Related papers (2023-07-06T14:16:25Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) have shown promising performance in self-supervised learning for 2D and 3D computer vision.
We propose Joint-MAE, a 2D-3D joint MAE framework for self-supervised 3D point cloud pre-training.
arXiv Detail & Related papers (2023-02-27T17:56:18Z) - Learning 3D Representations from 2D Pre-trained Models via
Image-to-Point Masked Autoencoders [52.91248611338202]
We propose an alternative to obtain superior 3D representations from 2D pre-trained models via Image-to-Point Masked Autoencoders, named as I2P-MAE.
By self-supervised pre-training, we leverage the well learned 2D knowledge to guide 3D masked autoencoding.
I2P-MAE attains the state-of-the-art 90.11% accuracy, +3.68% to the second-best, demonstrating superior transferable capacity.
arXiv Detail & Related papers (2022-12-13T17:59:20Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19.
Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint.
Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume.
arXiv Detail & Related papers (2022-11-10T13:11:21Z) - Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
Pre-training [56.81809311892475]
Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for language and 2D image transformers.
We propose Point-M2AE, a strong Multi-scale MAE pre-training framework for hierarchical self-supervised learning of 3D point clouds.
arXiv Detail & Related papers (2022-05-28T11:22:53Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.