Unbiased Scene Graph Generation by Type-Aware Message Passing on Heterogeneous and Dual Graphs
- URL: http://arxiv.org/abs/2411.13287v1
- Date: Wed, 20 Nov 2024 12:54:47 GMT
- Title: Unbiased Scene Graph Generation by Type-Aware Message Passing on Heterogeneous and Dual Graphs
- Authors: Guanglu Sun, Jin Qiu, Lili Liang,
- Abstract summary: An unbiased scene graph generation (TA-HDG) is proposed to address these issues.
For modeling interactive and non-interactive relations, the Interactive Graph Construction is proposed.
The Type-Aware Message Passing enhances the understanding of complex interactions.
- Score: 1.0609815608017066
- License:
- Abstract: Although great progress has been made in the research of unbiased scene graph generation, issues still hinder improving the predictive performance of both head and tail classes. An unbiased scene graph generation (TA-HDG) is proposed to address these issues. For modeling interactive and non-interactive relations, the Interactive Graph Construction is proposed to model the dependence of relations on objects by combining heterogeneous and dual graph, when modeling relations between multiple objects. It also implements a subject-object pair selection strategy to reduce meaningless edges. Moreover, the Type-Aware Message Passing enhances the understanding of complex interactions by capturing intra- and inter-type context in the Intra-Type and Inter-Type stages. The Intra-Type stage captures the semantic context of inter-relaitons and inter-objects. On this basis, the Inter-Type stage captures the context between objects and relations for interactive and non-interactive relations, respectively. Experiments on two datasets show that TA-HDG achieves improvements in the metrics of R@K and mR@K, which proves that TA-HDG can accurately predict the tail class while maintaining the competitive performance of the head class.
Related papers
- Towards a Unified Transformer-based Framework for Scene Graph Generation
and Human-object Interaction Detection [116.21529970404653]
We introduce SG2HOI+, a unified one-step model based on the Transformer architecture.
Our approach employs two interactive hierarchical Transformers to seamlessly unify the tasks of SGG and HOI detection.
Our approach achieves competitive performance when compared to state-of-the-art HOI methods.
arXiv Detail & Related papers (2023-11-03T07:25:57Z) - Semantic Scene Graph Generation Based on an Edge Dual Scene Graph and
Message Passing Neural Network [3.9280441311534653]
Scene graph generation (SGG) captures the relationships between objects in an image and creates a structured graph-based representation.
Existing SGG methods have a limited ability to accurately predict detailed relationships.
A new approach to the modeling multiobject relationships, called edge dual scene graph generation (EdgeSGG), is proposed herein.
arXiv Detail & Related papers (2023-11-02T12:36:52Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
We propose a novel DynSGG model based on multi-task learning, DynSGG-MTL, which introduces the local interaction information and global human-action interaction information.
Long-temporal human actions supervise the model to generate multiple scene graphs that conform to the global constraints and avoid the model being unable to learn the tail predicates.
arXiv Detail & Related papers (2023-08-10T01:24:25Z) - Cross-Modality Time-Variant Relation Learning for Generating Dynamic
Scene Graphs [16.760066844287046]
We propose a Time-variant Relation-aware TRansformer (TR$2$) to model the temporal change of relations in dynamic scene graphs.
We show that TR$2$ significantly outperforms previous state-of-the-art methods under two different settings.
arXiv Detail & Related papers (2023-05-15T10:30:38Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs.
Due to the diverse visual appearance of numerous possible subject-object combinations, there is a large intra-class variation within each predicate category.
Prototype-based Embedding Network (PE-Net) models entities/predicates with prototype-aligned compact and distinctive representations.
PL is introduced to help PE-Net efficiently learn such entitypredicate matching, and Prototype Regularization (PR) is devised to relieve the ambiguous entity-predicate matching.
arXiv Detail & Related papers (2023-03-13T13:30:59Z) - Unbiased Heterogeneous Scene Graph Generation with Relation-aware
Message Passing Neural Network [9.779600950401315]
We propose an unbiased heterogeneous scene graph generation (HetSGG) framework that captures relation-aware context.
We devise a novel message passing layer, called relation-aware message passing neural network (RMP), that aggregates the contextual information of an image.
arXiv Detail & Related papers (2022-12-01T11:25:36Z) - Hyper-relationship Learning Network for Scene Graph Generation [95.6796681398668]
We propose a hyper-relationship learning network, termed HLN, for scene graph generation.
We evaluate HLN on the most popular SGG dataset, i.e., the Visual Genome dataset.
For example, the proposed HLN improves the recall per relationship from 11.3% to 13.1%, and maintains the recall per image from 19.8% to 34.9%.
arXiv Detail & Related papers (2022-02-15T09:26:16Z) - Mutual Graph Learning for Camouflaged Object Detection [31.422775969808434]
A major challenge is that intrinsic similarities between foreground objects and background surroundings make the features extracted by deep model indistinguishable.
We design a novel Mutual Graph Learning model, which generalizes the idea of conventional mutual learning from regular grids to the graph domain.
In contrast to most mutual learning approaches that use a shared function to model all between-task interactions, MGL is equipped with typed functions for handling different complementary relations.
arXiv Detail & Related papers (2021-04-03T10:14:39Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
We propose a message passing graph neural network that explicitly models relational-temporal relations.
We show how our method is able to more effectively model relationships between relevant entities in the scene.
arXiv Detail & Related papers (2021-03-29T14:37:35Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.