Generalized Visual Relation Detection with Diffusion Models
- URL: http://arxiv.org/abs/2504.12100v1
- Date: Wed, 16 Apr 2025 14:03:24 GMT
- Title: Generalized Visual Relation Detection with Diffusion Models
- Authors: Kaifeng Gao, Siqi Chen, Hanwang Zhang, Jun Xiao, Yueting Zhuang, Qianru Sun,
- Abstract summary: Visual relation detection (VRD) aims to identify relationships (or interactions) between object pairs in an image.<n>We propose to model visual relations as continuous embeddings, and design diffusion models to achieve generalized VRD in a conditional generative manner.<n>Our Diff-VRD is able to generate visual relations beyond the pre-defined category labels of datasets.
- Score: 94.62313788626128
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Visual relation detection (VRD) aims to identify relationships (or interactions) between object pairs in an image. Although recent VRD models have achieved impressive performance, they are all restricted to pre-defined relation categories, while failing to consider the semantic ambiguity characteristic of visual relations. Unlike objects, the appearance of visual relations is always subtle and can be described by multiple predicate words from different perspectives, e.g., ``ride'' can be depicted as ``race'' and ``sit on'', from the sports and spatial position views, respectively. To this end, we propose to model visual relations as continuous embeddings, and design diffusion models to achieve generalized VRD in a conditional generative manner, termed Diff-VRD. We model the diffusion process in a latent space and generate all possible relations in the image as an embedding sequence. During the generation, the visual and text embeddings of subject-object pairs serve as conditional signals and are injected via cross-attention. After the generation, we design a subsequent matching stage to assign the relation words to subject-object pairs by considering their semantic similarities. Benefiting from the diffusion-based generative process, our Diff-VRD is able to generate visual relations beyond the pre-defined category labels of datasets. To properly evaluate this generalized VRD task, we introduce two evaluation metrics, i.e., text-to-image retrieval and SPICE PR Curve inspired by image captioning. Extensive experiments in both human-object interaction (HOI) detection and scene graph generation (SGG) benchmarks attest to the superiority and effectiveness of Diff-VRD.
Related papers
- Unbiased Scene Graph Generation by Type-Aware Message Passing on Heterogeneous and Dual Graphs [1.0609815608017066]
An unbiased scene graph generation (TA-HDG) is proposed to address these issues.
For modeling interactive and non-interactive relations, the Interactive Graph Construction is proposed.
The Type-Aware Message Passing enhances the understanding of complex interactions.
arXiv Detail & Related papers (2024-11-20T12:54:47Z) - Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
We introduce DIFfusionHOI, a new HOI detector shedding light on text-to-image diffusion models.
We first devise an inversion-based strategy to learn the expression of relation patterns between humans and objects in embedding space.
These learned relation embeddings then serve as textual prompts, to steer diffusion models generate images that depict specific interactions.
arXiv Detail & Related papers (2024-10-26T12:00:33Z) - Zero-shot Visual Relation Detection via Composite Visual Cues from Large
Language Models [44.60439935450292]
We propose a novel method for zero-shot visual recognition: RECODE.
It decomposes each predicate category into subject, object, and spatial components.
Different visual cues enhance the discriminability of similar relation categories from different perspectives.
arXiv Detail & Related papers (2023-05-21T14:40:48Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs.
Due to the diverse visual appearance of numerous possible subject-object combinations, there is a large intra-class variation within each predicate category.
Prototype-based Embedding Network (PE-Net) models entities/predicates with prototype-aligned compact and distinctive representations.
PL is introduced to help PE-Net efficiently learn such entitypredicate matching, and Prototype Regularization (PR) is devised to relieve the ambiguous entity-predicate matching.
arXiv Detail & Related papers (2023-03-13T13:30:59Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.