論文の概要: Verifying Machine Unlearning with Explainable AI
- arxiv url: http://arxiv.org/abs/2411.13332v1
- Date: Wed, 20 Nov 2024 13:57:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:59.683475
- Title: Verifying Machine Unlearning with Explainable AI
- Title(参考訳): 説明可能なAIによる機械学習の検証
- Authors: Àlex Pujol Vidal, Anders S. Johansen, Mohammad N. S. Jahromi, Sergio Escalera, Kamal Nasrollahi, Thomas B. Moeslund,
- Abstract要約: 港の前面監視における機械学習(MU)の検証における説明可能なAI(XAI)の有効性について検討する。
私たちの概念実証は、従来のメトリクスを超えて拡張されたMUの革新的な検証ステップとして属性機能を導入しています。
本稿では,これらの手法の有効性を評価するために,熱マップカバレッジ(HC)とアテンションシフト(AS)の2つの新しいXAI指標を提案する。
- 参考スコア(独自算出の注目度): 46.7583989202789
- License:
- Abstract: We investigate the effectiveness of Explainable AI (XAI) in verifying Machine Unlearning (MU) within the context of harbor front monitoring, focusing on data privacy and regulatory compliance. With the increasing need to adhere to privacy legislation such as the General Data Protection Regulation (GDPR), traditional methods of retraining ML models for data deletions prove impractical due to their complexity and resource demands. MU offers a solution by enabling models to selectively forget specific learned patterns without full retraining. We explore various removal techniques, including data relabeling, and model perturbation. Then, we leverage attribution-based XAI to discuss the effects of unlearning on model performance. Our proof-of-concept introduces feature importance as an innovative verification step for MU, expanding beyond traditional metrics and demonstrating techniques' ability to reduce reliance on undesired patterns. Additionally, we propose two novel XAI-based metrics, Heatmap Coverage (HC) and Attention Shift (AS), to evaluate the effectiveness of these methods. This approach not only highlights how XAI can complement MU by providing effective verification, but also sets the stage for future research to enhance their joint integration.
- Abstract(参考訳): 本稿では,データプライバシと規制コンプライアンスに焦点をあて,前向き監視の文脈におけるマシン・アンラーニング(MU)の検証における説明可能なAI(XAI)の有効性を検討する。
GDPR(General Data Protection Regulation)のようなプライバシー法に従う必要性が高まっているため、データ削除のためのMLモデルをトレーニングする従来の方法は、その複雑さとリソース要求のために非現実的であることが証明されている。
MUは、モデルが完全にリトレーニングすることなく、特定の学習パターンを選択的に忘れることを可能にするソリューションを提供する。
データレバーベリングやモデル摂動など,さまざまな除去手法について検討する。
そして、帰属に基づくXAIを活用し、学習がモデル性能に与える影響について議論する。
我々の概念実証は、MUの革新的な検証ステップとして機能の重要性を導入し、従来のメトリクスを超えて拡張し、望ましくないパターンへの依存を減らすテクニックの能力を示す。
さらに,本手法の有効性を評価するために,新しいXAI指標であるHeatmap Coverage (HC) と Attention Shift (AS) を提案する。
このアプローチは,有効検証を提供することによってXAIがMUを補完するだけでなく,統合性を高めるための将来の研究のステージも設定する。
関連論文リスト
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU)フレームワークは3つのコアコンポーネントで構成されている。
知識未学習誘導モジュールは、未学習の損失を通じて特定の知識を除去する。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を維持する。
また、特定のデータ片の未学習範囲を動的に評価し、反復的な更新を行う反復未学習リファインメントモジュールも用意されている。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Adversarial Machine Unlearning [26.809123658470693]
本稿では,機械学習モデルに対する特定のトレーニングデータの影響を取り除くことを目的とした,機械学習の課題に焦点を当てた。
伝統的に、未学習アルゴリズムの開発は、ある種のプライバシー脅威である会員推論攻撃(MIA)と並行して実行される。
未学習アルゴリズムの設計にMIAを統合するゲーム理論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-11T20:07:22Z) - Knowledge Distillation-Based Model Extraction Attack using GAN-based Private Counterfactual Explanations [1.6576983459630268]
本稿では,ML プラットフォーム内で MEA を実行する上で,モデル説明,特に非現実的説明をどのように活用できるかを検討することに注力する。
本稿では,代替モデルの抽出効率を高めるため,知識蒸留(KD)に基づくMEAの新しいアプローチを提案する。
また,差分プライバシー(DP)の有効性を緩和戦略として評価した。
論文 参考訳(メタデータ) (2024-04-04T10:28:55Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Learn to Unlearn: A Survey on Machine Unlearning [29.077334665555316]
本稿では,最近の機械学習技術,検証機構,潜在的攻撃について概説する。
新たな課題と今後の研究方向性を強調します。
本稿では、プライバシ、エクイティ、レジリエンスをMLシステムに統合するための貴重なリソースの提供を目的としている。
論文 参考訳(メタデータ) (2023-05-12T14:28:02Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
最近のデータ規制要件に応えて、マシン・アンラーニング(MU)が重要なプロセスとして登場した。
本研究は,ウェイトプルーニングによるモデルスペーシフィケーションという,新しいモデルベース視点を紹介する。
理論と実践の両方において、モデルスパーシティは、近似アンラーナーのマルチ基準アンラーニング性能を高めることができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:12:02Z) - AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models [1.8752655643513647]
XAIツールは、モデル抽出攻撃の脆弱性を増大させる可能性がある。
そこで本研究では,ブラックボックス設定下での解釈可能なモデルに対して,新たなリトレーニング(学習)に基づくモデル抽出攻撃フレームワークを提案する。
AUTOLYCUSは非常に効果的で、最先端の攻撃に比べてクエリが大幅に少ないことが示される。
論文 参考訳(メタデータ) (2023-02-04T13:23:39Z) - From Mimicking to Integrating: Knowledge Integration for Pre-Trained
Language Models [55.137869702763375]
本稿では,新しいPLM再利用パラダイムであるKnowledge Integration(KI)について検討する。
KIは,異なる分類問題に特化している教師-PLMの知識を,多種多様な学生モデルにマージすることを目的としている。
次に,モデル不確かさを意識した知識統合(MUKI)フレームワークを設計し,学生の黄金の監督を回復する。
論文 参考訳(メタデータ) (2022-10-11T07:59:08Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。