Verifying Machine Unlearning with Explainable AI
- URL: http://arxiv.org/abs/2411.13332v1
- Date: Wed, 20 Nov 2024 13:57:32 GMT
- Title: Verifying Machine Unlearning with Explainable AI
- Authors: Àlex Pujol Vidal, Anders S. Johansen, Mohammad N. S. Jahromi, Sergio Escalera, Kamal Nasrollahi, Thomas B. Moeslund,
- Abstract summary: We investigate the effectiveness of Explainable AI (XAI) in verifying Machine Unlearning (MU) within context of harbor front monitoring.
Our proof-of-concept introduces attribution feature as an innovative verification step for MU, expanding beyond traditional metrics.
We propose two novel XAI-based metrics, Heatmap Coverage (HC) and Attention Shift (AS) to evaluate the effectiveness of these methods.
- Score: 46.7583989202789
- License:
- Abstract: We investigate the effectiveness of Explainable AI (XAI) in verifying Machine Unlearning (MU) within the context of harbor front monitoring, focusing on data privacy and regulatory compliance. With the increasing need to adhere to privacy legislation such as the General Data Protection Regulation (GDPR), traditional methods of retraining ML models for data deletions prove impractical due to their complexity and resource demands. MU offers a solution by enabling models to selectively forget specific learned patterns without full retraining. We explore various removal techniques, including data relabeling, and model perturbation. Then, we leverage attribution-based XAI to discuss the effects of unlearning on model performance. Our proof-of-concept introduces feature importance as an innovative verification step for MU, expanding beyond traditional metrics and demonstrating techniques' ability to reduce reliance on undesired patterns. Additionally, we propose two novel XAI-based metrics, Heatmap Coverage (HC) and Attention Shift (AS), to evaluate the effectiveness of these methods. This approach not only highlights how XAI can complement MU by providing effective verification, but also sets the stage for future research to enhance their joint integration.
Related papers
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Adversarial Machine Unlearning [26.809123658470693]
This paper focuses on the challenge of machine unlearning, aiming to remove the influence of specific training data on machine learning models.
Traditionally, the development of unlearning algorithms runs parallel with that of membership inference attacks (MIA), a type of privacy threat.
We propose a game-theoretic framework that integrates MIAs into the design of unlearning algorithms.
arXiv Detail & Related papers (2024-06-11T20:07:22Z) - Knowledge Distillation-Based Model Extraction Attack using GAN-based Private Counterfactual Explanations [1.6576983459630268]
We focus on investigating how model explanations, particularly counterfactual explanations, can be exploited for performing MEA within the ML platform.
We propose a novel approach for MEA based on Knowledge Distillation (KD) to enhance the efficiency of extracting a substitute model.
We also assess the effectiveness of differential privacy (DP) as a mitigation strategy.
arXiv Detail & Related papers (2024-04-04T10:28:55Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Learn to Unlearn: A Survey on Machine Unlearning [29.077334665555316]
This article presents a review of recent machine unlearning techniques, verification mechanisms, and potential attacks.
We highlight emerging challenges and prospective research directions.
We aim for this paper to provide valuable resources for integrating privacy, equity, andresilience into ML systems.
arXiv Detail & Related papers (2023-05-12T14:28:02Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models [1.8752655643513647]
XAI tools can increase the vulnerability of model extraction attacks, which is a concern when model owners prefer black-box access.
We propose a novel retraining (learning) based model extraction attack framework against interpretable models under black-box settings.
We show that AUTOLYCUS is highly effective, requiring significantly fewer queries compared to state-of-the-art attacks.
arXiv Detail & Related papers (2023-02-04T13:23:39Z) - From Mimicking to Integrating: Knowledge Integration for Pre-Trained
Language Models [55.137869702763375]
This paper explores a novel PLM reuse paradigm, Knowledge Integration (KI)
KI aims to merge the knowledge from different teacher-PLMs, each of which specializes in a different classification problem, into a versatile student model.
We then design a Model Uncertainty--aware Knowledge Integration (MUKI) framework to recover the golden supervision for the student.
arXiv Detail & Related papers (2022-10-11T07:59:08Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.