Learning based Ge'ez character handwritten recognition
- URL: http://arxiv.org/abs/2411.13350v1
- Date: Wed, 20 Nov 2024 14:22:15 GMT
- Title: Learning based Ge'ez character handwritten recognition
- Authors: Hailemicael Lulseged Yimer, Hailegabriel Dereje Degefa, Marco Cristani, Federico Cunico,
- Abstract summary: Ge'ez, an ancient Ethiopic script of cultural and historical significance, has been largely neglected in handwriting recognition research.
We develop a state-of-the-art Ge'ez handwriting recognition system using Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks.
Our approach uses a two-stage recognition process. First, a CNN is trained to recognize individual characters, which then acts as a feature extractor for an LSTM-based system for word recognition.
- Score: 7.699119649521884
- License:
- Abstract: Ge'ez, an ancient Ethiopic script of cultural and historical significance, has been largely neglected in handwriting recognition research, hindering the digitization of valuable manuscripts. Our study addresses this gap by developing a state-of-the-art Ge'ez handwriting recognition system using Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. Our approach uses a two-stage recognition process. First, a CNN is trained to recognize individual characters, which then acts as a feature extractor for an LSTM-based system for word recognition. Our dual-stage recognition approach achieves new top scores in Ge'ez handwriting recognition, outperforming eight state-of-the-art methods, which are SVTR, ASTER, and others as well as human performance, as measured in the HHD-Ethiopic dataset work. This research significantly advances the preservation and accessibility of Ge'ez cultural heritage, with implications for historical document digitization, educational tools, and cultural preservation. The code will be released upon acceptance.
Related papers
- Low-Data Classification of Historical Music Manuscripts: A Few-Shot Learning Approach [0.0]
We develop a self-supervised learning framework for the classification of musical symbols in historical manuscripts.
We overcome this challenge by training a neural-based feature extractor on unlabelled data, enabling effective classification with minimal samples.
arXiv Detail & Related papers (2024-11-25T14:14:25Z) - UNIT: Unifying Image and Text Recognition in One Vision Encoder [51.140564856352825]
UNIT is a novel training framework aimed at UNifying Image and Text recognition within a single model.
We show that UNIT significantly outperforms existing methods on document-related tasks.
Notably, UNIT retains the original vision encoder architecture, making it cost-free in terms of inference and deployment.
arXiv Detail & Related papers (2024-09-06T08:02:43Z) - Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition [16.987008461171065]
We explore the potential of continual self-supervised learning to alleviate the catastrophic forgetting problem in handwritten text recognition.
Our method consists in adding intermediate layers called adapters for each task, and efficiently distilling knowledge from the previous model while learning the current task.
We attain state-of-the-art performance on English, Italian and Russian scripts, whilst adding only a few parameters per task.
arXiv Detail & Related papers (2023-03-16T14:27:45Z) - Uncovering the Handwritten Text in the Margins: End-to-end Handwritten
Text Detection and Recognition [0.840835093659811]
This work presents an end-to-end framework for automatic detection and recognition of handwritten marginalia.
It uses data augmentation and transfer learning to overcome training data scarcity.
The effectiveness of the proposed framework has been empirically evaluated on the data from early book collections found in the Uppsala University Library in Sweden.
arXiv Detail & Related papers (2023-03-10T14:00:53Z) - Kurdish Handwritten Character Recognition using Deep Learning Techniques [26.23274417985375]
This paper attempts to design and develop a model that can recognize handwritten characters for Kurdish alphabets using deep learning techniques.
A comprehensive dataset was created for handwritten Kurdish characters, which contains more than 40 thousand images.
The tested results reported a 96% accuracy rate, and training accuracy reported a 97% accuracy rate.
arXiv Detail & Related papers (2022-10-18T16:48:28Z) - Reading and Writing: Discriminative and Generative Modeling for
Self-Supervised Text Recognition [101.60244147302197]
We introduce contrastive learning and masked image modeling to learn discrimination and generation of text images.
Our method outperforms previous self-supervised text recognition methods by 10.2%-20.2% on irregular scene text recognition datasets.
Our proposed text recognizer exceeds previous state-of-the-art text recognition methods by averagely 5.3% on 11 benchmarks, with similar model size.
arXiv Detail & Related papers (2022-07-01T03:50:26Z) - Continuous Offline Handwriting Recognition using Deep Learning Models [0.0]
Handwritten text recognition is an open problem of great interest in the area of automatic document image analysis.
We have proposed a new recognition model based on integrating two types of deep learning architectures: convolutional neural networks (CNN) and sequence-to-sequence (seq2seq)
The new proposed model provides competitive results with those obtained with other well-established methodologies.
arXiv Detail & Related papers (2021-12-26T07:31:03Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
Much of the existing linguistic data in many languages of the world is locked away in non-digitized books and documents.
Previous work has demonstrated the utility of neural post-correction methods on recognition of less-well-resourced languages.
We present a semi-supervised learning method that makes it possible to utilize raw images to improve performance.
arXiv Detail & Related papers (2021-11-04T04:39:02Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
We propose a CogAlign approach to integrate cognitive language processing signals into natural language processing models.
We show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets.
arXiv Detail & Related papers (2021-06-10T07:10:25Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
Sign language is used by deaf or speech impaired people to communicate.
Skeleton-based recognition is becoming popular that it can be further ensembled with RGB-D based method to achieve state-of-the-art performance.
Inspired by the recent development of whole-body pose estimation citejin 2020whole, we propose recognizing sign language based on the whole-body key points and features.
arXiv Detail & Related papers (2021-03-16T03:38:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.