Efficient Brain Imaging Analysis for Alzheimer's and Dementia Detection Using Convolution-Derivative Operations
- URL: http://arxiv.org/abs/2411.13490v2
- Date: Fri, 22 Nov 2024 18:26:22 GMT
- Title: Efficient Brain Imaging Analysis for Alzheimer's and Dementia Detection Using Convolution-Derivative Operations
- Authors: Yasmine Mustafa, Mohamed Elmahallawy, Tie Luo,
- Abstract summary: Alzheimer's disease (AD) is characterized by progressive neurodegeneration and results in detrimental structural changes in human brains.
Jacobian maps, derived from spatial normalization in voxel-based morphometry (VBM), have been instrumental in interpreting volume alterations associated with AD.
In this study, we propose Sobel kernel angle difference (SKAD) as a computationally efficient alternative.
- Score: 1.1674893622721483
- License:
- Abstract: Alzheimer's disease (AD) is characterized by progressive neurodegeneration and results in detrimental structural changes in human brains. Detecting these changes is crucial for early diagnosis and timely intervention of disease progression. Jacobian maps, derived from spatial normalization in voxel-based morphometry (VBM), have been instrumental in interpreting volume alterations associated with AD. However, the computational cost of generating Jacobian maps limits its clinical adoption. In this study, we explore alternative methods and propose Sobel kernel angle difference (SKAD) as a computationally efficient alternative. SKAD is a derivative operation that offers an optimized approach to quantifying volumetric alterations through localized analysis of the gradients. By efficiently extracting gradient amplitude changes at critical spatial regions, this derivative operation captures regional volume variations Evaluation of SKAD over various medical datasets demonstrates that it is 6.3x faster than Jacobian maps while still maintaining comparable accuracy. This makes it an efficient and competitive approach in neuroimaging research and clinical practice.
Related papers
- AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - GS-EMA: Integrating Gradient Surgery Exponential Moving Average with
Boundary-Aware Contrastive Learning for Enhanced Domain Generalization in
Aneurysm Segmentation [41.97669338211682]
We propose a novel domain generalization strategy that employs gradient surgery exponential moving average (GS-EMA) optimization technique and boundary-aware contrastive learning (BACL)
Our approach is distinct in its ability to adapt to new, unseen domains by learning domain-invariant features, thereby improving the robustness and accuracy of aneurysm segmentation across diverse clinical datasets.
arXiv Detail & Related papers (2024-02-23T10:02:15Z) - Fuzzy Information Seeded Region Growing for Automated Lesions After
Stroke Segmentation in MR Brain Images [0.0]
Fuzzy Information Seeded Region Growing (FISRG) algorithm designed to delineate complex and irregular boundaries of stroke lesions.
Highest Dice score achieved in experiments was 94.2%, indicating high degree of similarity between algorithm's output and expert-validated ground truth.
Results underscore potential of FISRG algorithm in contributing significantly to advancements in medical imaging analysis for stroke diagnosis and treatment.
arXiv Detail & Related papers (2023-11-20T13:09:11Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Bayesian longitudinal tensor response regression for modeling
neuroplasticity [0.0]
A major interest in longitudinal neuroimaging studies involves investigating voxel-level neuroplasticity due to treatment and other factors across visits.
We propose a novel Bayesian tensor response regression approach for longitudinal imaging data, which pools information across spatially-distributed voxels.
The proposed method is able to infer individual-level neuroplasticity, allowing for examination of personalized disease or recovery trajectories.
arXiv Detail & Related papers (2023-09-12T18:48:18Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Optimal Transport Features for Morphometric Population Analysis [12.477630681202609]
We propose to augment morphometric analysis with an additional feature extraction step based on unbalanced optimal transport.
The optimal transport feature extraction step increases statistical power for pathologies that cause spatially dispersed tissue loss.
The results demonstrate that the proposed approach can identify tissue changes and differences that are not otherwise measurable.
arXiv Detail & Related papers (2022-08-11T15:46:32Z) - Deep Joint Learning of Pathological Region Localization and Alzheimer's
Disease Diagnosis [4.5484714814315685]
BrainBagNet is a framework for jointly learning pathological region localization and Alzheimer's disease diagnosis.
The proposed method represents the patch-level response from whole-brain MRI scans and discriminative brain-region from position information.
In five-fold cross-validation, the classification performance of the proposed method outperformed that of the state-of-the-art methods in both AD diagnosis and mild cognitive impairment prediction tasks.
arXiv Detail & Related papers (2021-08-10T10:06:54Z) - Dynamic Functional Connectivity and Graph Convolution Network for
Alzheimer's Disease Classification [0.7723181091241251]
Alzheimer's disease (AD) is the most prevalent form of dementia. Traditional methods cannot achieve efficient and accurate diagnosis of AD.
In this paper, we introduce a novel method based on dynamic functional connectivity (dFC) that can effectively capture changes in the brain.
arXiv Detail & Related papers (2020-06-24T06:45:25Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.