REDUCIO! Generating 1024$\times$1024 Video within 16 Seconds using Extremely Compressed Motion Latents
- URL: http://arxiv.org/abs/2411.13552v2
- Date: Tue, 26 Nov 2024 06:08:12 GMT
- Title: REDUCIO! Generating 1024$\times$1024 Video within 16 Seconds using Extremely Compressed Motion Latents
- Authors: Rui Tian, Qi Dai, Jianmin Bao, Kai Qiu, Yifan Yang, Chong Luo, Zuxuan Wu, Yu-Gang Jiang,
- Abstract summary: One crucial obstacle for large-scale applications is the expensive training and inference cost.
In this paper, we argue that videos contain much more redundant information than images, thus can be encoded by very few motion latents.
We train Reducio-DiT in around 3.2K training hours in total and generate a 16-frame 1024*1024 video clip within 15.5 seconds on a single A100 GPU.
- Score: 110.41795676048835
- License:
- Abstract: Commercial video generation models have exhibited realistic, high-fidelity results but are still restricted to limited access. One crucial obstacle for large-scale applications is the expensive training and inference cost. In this paper, we argue that videos contain much more redundant information than images, thus can be encoded by very few motion latents based on a content image. Towards this goal, we design an image-conditioned VAE to encode a video to an extremely compressed motion latent space. This magic Reducio charm enables 64x reduction of latents compared to a common 2D VAE, without sacrificing the quality. Training diffusion models on such a compact representation easily allows for generating 1K resolution videos. We then adopt a two-stage video generation paradigm, which performs text-to-image and text-image-to-video sequentially. Extensive experiments show that our Reducio-DiT achieves strong performance in evaluation, though trained with limited GPU resources. More importantly, our method significantly boost the efficiency of video LDMs both in training and inference. We train Reducio-DiT in around 3.2K training hours in total and generate a 16-frame 1024*1024 video clip within 15.5 seconds on a single A100 GPU. Code released at https://github.com/microsoft/Reducio-VAE .
Related papers
- Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition [124.41196697408627]
We propose content-motion latent diffusion model (CMD), a novel efficient extension of pretrained image diffusion models for video generation.
CMD encodes a video as a combination of a content frame (like an image) and a low-dimensional motion latent representation.
We generate the content frame by fine-tuning a pretrained image diffusion model, and we generate the motion latent representation by training a new lightweight diffusion model.
arXiv Detail & Related papers (2024-03-21T05:48:48Z) - GaussianImage: 1000 FPS Image Representation and Compression by 2D Gaussian Splatting [27.33121386538575]
Implicit neural representations (INRs) recently achieved great success in image representation and compression.
However, this requirement often hinders their use on low-end devices with limited memory.
We propose a groundbreaking paradigm of image representation and compression by 2D Gaussian Splatting, named GaussianImage.
arXiv Detail & Related papers (2024-03-13T14:02:54Z) - Snap Video: Scaled Spatiotemporal Transformers for Text-to-Video
Synthesis [69.83405335645305]
We argue that naively bringing advances of image models to the video generation domain reduces motion fidelity, visual quality and impairs scalability.
In this work, we build Snap Video, a video-first model that systematically addresses these challenges.
We show that a U-Net - a workhorse behind image generation - scales poorly when generating videos, requiring significant computational overhead.
This allows us to efficiently train a text-to-video model with billions of parameters for the first time, reach state-of-the-art results on a number of benchmarks, and generate videos with substantially higher quality, temporal consistency, and motion complexity.
arXiv Detail & Related papers (2024-02-22T18:55:08Z) - LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation [44.220329202024494]
We present a few-shot-based tuning framework, LAMP, which enables text-to-image diffusion model Learn A specific Motion Pattern with 816 videos on a single GPU.
Specifically, we design a first-frame-conditioned pipeline that uses an off-the-shelf text-to-image model for content generation.
To capture the features of temporal dimension, we expand the pretrained 2D convolution layers of the T2I model to our novel temporal-spatial motion learning layers.
arXiv Detail & Related papers (2023-10-16T19:03:19Z) - Align your Latents: High-Resolution Video Synthesis with Latent
Diffusion Models [71.11425812806431]
Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding excessive compute demands.
Here, we apply the LDM paradigm to high-resolution generation, a particularly resource-intensive task.
We focus on two relevant real-world applications: Simulation of in-the-wild driving data and creative content creation with text-to-video modeling.
arXiv Detail & Related papers (2023-04-18T08:30:32Z) - MagicVideo: Efficient Video Generation With Latent Diffusion Models [76.95903791630624]
We present an efficient text-to-video generation framework based on latent diffusion models, termed MagicVideo.
Due to a novel and efficient 3D U-Net design and modeling video distributions in a low-dimensional space, MagicVideo can synthesize video clips with 256x256 spatial resolution on a single GPU card.
We conduct extensive experiments and demonstrate that MagicVideo can generate high-quality video clips with either realistic or imaginary content.
arXiv Detail & Related papers (2022-11-20T16:40:31Z) - Compressed Vision for Efficient Video Understanding [83.97689018324732]
We propose a framework enabling research on hour-long videos with the same hardware that can now process second-long videos.
We replace standard video compression, e.g. JPEG, with neural compression and show that we can directly feed compressed videos as inputs to regular video networks.
arXiv Detail & Related papers (2022-10-06T15:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.