論文の概要: COOD: Concept-based Zero-shot OOD Detection
- arxiv url: http://arxiv.org/abs/2411.13578v1
- Date: Fri, 15 Nov 2024 08:15:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:20:46.016315
- Title: COOD: Concept-based Zero-shot OOD Detection
- Title(参考訳): COOD:概念に基づくゼロショットOOD検出
- Authors: Zhendong Liu, Yi Nian, Henry Peng Zou, Li Li, Xiyang Hu, Yue Zhao,
- Abstract要約: ゼロショットマルチラベルOOD検出フレームワークであるCOODを紹介する。
ラベルごとに肯定的概念と否定的概念の両方で意味空間を豊かにすることにより、我々のアプローチは複雑なラベル依存をモデル化する。
提案手法は既存のアプローチよりも優れており,VOCとデータセットの両方で平均95%のAUROCを実現している。
- 参考スコア(独自算出の注目度): 12.361461338978732
- License:
- Abstract: How can models effectively detect out-of-distribution (OOD) samples in complex, multi-label settings without extensive retraining? Existing OOD detection methods struggle to capture the intricate semantic relationships and label co-occurrences inherent in multi-label settings, often requiring large amounts of training data and failing to generalize to unseen label combinations. While large language models have revolutionized zero-shot OOD detection, they primarily focus on single-label scenarios, leaving a critical gap in handling real-world tasks where samples can be associated with multiple interdependent labels. To address these challenges, we introduce COOD, a novel zero-shot multi-label OOD detection framework. COOD leverages pre-trained vision-language models, enhancing them with a concept-based label expansion strategy and a new scoring function. By enriching the semantic space with both positive and negative concepts for each label, our approach models complex label dependencies, precisely differentiating OOD samples without the need for additional training. Extensive experiments demonstrate that our method significantly outperforms existing approaches, achieving approximately 95% average AUROC on both VOC and COCO datasets, while maintaining robust performance across varying numbers of labels and different types of OOD samples.
- Abstract(参考訳): 大規模なリトレーニングを伴わない複雑なマルチラベル設定において、モデルがout-of-distriion(OOD)サンプルを効果的に検出するにはどうすればよいか?
既存のOOD検出手法は、複雑なセマンティックな関係を捉えるのに苦労し、ラベルの共起はマルチラベル設定に固有のものであり、しばしば大量のトレーニングデータを必要とする。
大きな言語モデルはゼロショットのOOD検出に革命をもたらしたが、主にシングルラベルのシナリオに焦点を当てており、サンプルを複数の相互依存ラベルに関連付けることができる現実世界のタスクを扱う上で、重要なギャップを残している。
これらの課題に対処するために,新しいゼロショットマルチラベルOOD検出フレームワークであるCOODを紹介する。
COODは、事前訓練された視覚言語モデルを活用し、概念ベースのラベル拡張戦略と新しいスコアリング機能でそれらを強化する。
ラベルごとに正と負の両方の概念で意味空間を充実させることで、我々のアプローチは複雑なラベル依存をモデル化し、追加のトレーニングを必要とせずにOODサンプルを正確に識別する。
大規模な実験により,本手法は既存のアプローチよりも優れ,VOCおよびCOCOデータセット上で平均95%のAUROCを実現し,ラベル数やOODサンプルの種類によって頑健な性能を維持した。
関連論文リスト
- Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
既存のアウト・オブ・ディストリビューション(OOD)検出ベンチマークは、サンプルを新しいラベルでOODデータとして分類する。
いくつかの限界OODサンプルは、実際には分布内(ID)サンプルに密接なセマンティック内容を持ち、OODサンプルをソリテスパラドックス(英語版)と判定する。
この問題に対処するため,Incremental Shift OOD (IS-OOD) というベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-14T09:27:56Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - Negative Label Guided OOD Detection with Pretrained Vision-Language Models [96.67087734472912]
Out-of-distriion (OOD) は未知のクラスからサンプルを識別することを目的としている。
我々は,大規模なコーパスデータベースから大量の負のラベルを抽出する,NegLabelと呼ばれる新しいポストホックOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T09:19:52Z) - APP: Adaptive Prototypical Pseudo-Labeling for Few-shot OOD Detection [40.846633965439956]
本稿では、少数のラベル付きINDデータと大量のラベル付き混合データしか存在しない、数ショットのOOD設定に焦点を当てる。
数発のOOD検出のためのアダプティブ擬似ラベル法(APP)を提案する。
論文 参考訳(メタデータ) (2023-10-20T09:48:52Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - Estimating Soft Labels for Out-of-Domain Intent Detection [122.68266151023676]
Out-of-Domain (OOD)インテント検出は,実際の対話システムにおいて重要である。
擬似OODサンプルに対するソフトラベルを推定できる適応型ソフト擬似ラベル法(ASoul)を提案する。
論文 参考訳(メタデータ) (2022-11-10T13:31:13Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
本研究では,SPMLL (Single- positive multi-label learning) について検討した。
ラベルエンハンスメントを用いた単陽性MultIラベル学習という新しい手法を提案する。
ベンチマークデータセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-06-01T14:26:30Z) - Semantically Coherent Out-of-Distribution Detection [26.224146828317277]
現在のアウト・オブ・ディストリビューション(OOD)検出ベンチマークは、ひとつのデータセットをイン・ディストリビューション(ID)として定義し、他のすべてのデータセットをOODとして定義することで、一般的に構築されている。
ベンチマークを再設計し、セマンティック・コヒーレント・アウト・オブ・ディストリビューション検出(SC-OOD)を提案する。
本手法は,SC-OODベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-08-26T17:53:32Z) - Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning [54.85397562961903]
ラベル付きデータに制限がある場合に、ラベルなしデータを利用して強力なモデルをトレーニングする半教師付き学習(SSL)が提案されている。
我々は、Open-set SSLと呼ばれるより複雑な新しいシナリオに対処する。
提案手法は,OOD試料の効果を除去し,最先端の結果を得る。
論文 参考訳(メタデータ) (2020-07-22T10:33:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。