論文の概要: Deep Feature Response Discriminative Calibration
- arxiv url: http://arxiv.org/abs/2411.13582v1
- Date: Sat, 16 Nov 2024 10:48:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:19:26.183758
- Title: Deep Feature Response Discriminative Calibration
- Title(参考訳): 深部特徴応答判別校正
- Authors: Wenxiang Xu, Tian Qiu, Linyun Zhou, Zunlei Feng, Mingli Song, Huiqiong Wang,
- Abstract要約: ResNetやSENetのような最適化技術は、モデルの精度を改善するために提案されている。
異なる特徴に対する差別的なキャリブレーションが欠如しているため、モデル出力に制限が生じる。
特徴応答を識別的に分類する手法を提案する。
- 参考スコア(独自算出の注目度): 37.81540706307031
- License:
- Abstract: Deep neural networks (DNNs) have numerous applications across various domains. Several optimization techniques, such as ResNet and SENet, have been proposed to improve model accuracy. These techniques improve the model performance by adjusting or calibrating feature responses according to a uniform standard. However, they lack the discriminative calibration for different features, thereby introducing limitations in the model output. Therefore, we propose a method that discriminatively calibrates feature responses. The preliminary experimental results indicate that the neural feature response follows a Gaussian distribution. Consequently, we compute confidence values by employing the Gaussian probability density function, and then integrate these values with the original response values. The objective of this integration is to improve the feature discriminability of the neural feature response. Based on the calibration values, we propose a plugin-based calibration module incorporated into a modified ResNet architecture, termed Response Calibration Networks (ResCNet). Extensive experiments on datasets like CIFAR-10, CIFAR-100, SVHN, and ImageNet demonstrate the effectiveness of the proposed approach. The developed code is publicly available at https://github.com/tcmyxc/ResCNet.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、さまざまなドメインにまたがる多数のアプリケーションを持つ。
ResNetやSENetといったいくつかの最適化手法がモデル精度を改善するために提案されている。
これらの技術は、一様基準に従って特徴応答を調整または校正することにより、モデル性能を向上させる。
しかし、異なる特徴に対する識別的キャリブレーションが欠如しているため、モデル出力に制限が生じる。
そこで本稿では,特徴応答を識別的に分類する手法を提案する。
予備実験の結果、神経特徴応答はガウス分布に従うことが示唆された。
したがって、ガウス確率密度関数を用いて信頼値を計算し、元の応答値とこれらの値を統合する。
この統合の目的は、ニューラル特徴応答の特徴識別性を改善することである。
キャリブレーションの値に基づいて,ResCNet(ResCNet)と呼ばれる改良型ResNetアーキテクチャに組み込まれたプラグインベースのキャリブレーションモジュールを提案する。
CIFAR-10、CIFAR-100、SVHN、ImageNetといったデータセットに関する大規模な実験は、提案手法の有効性を実証している。
開発コードはhttps://github.com/tcmyxc/ResCNetで公開されている。
関連論文リスト
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
現代のディープニューラルネットワーク(DNN)は、しばしば過剰な自信に悩まされ、誤校正につながる。
この問題に対処するために,特徴クリッピング(FC)と呼ばれるポストホックキャリブレーション手法を提案する。
FCは特定の閾値に特徴値をクリップし、高い校正誤差サンプルのエントロピーを効果的に増加させる。
論文 参考訳(メタデータ) (2024-10-16T06:44:35Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration [62.4971588282174]
我々はニューラルクランプ法と呼ばれる新しい後処理キャリブレーション法を提案する。
実験の結果,Neural Clampingは最先端の処理後のキャリブレーション法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-23T14:18:39Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Insta-RS: Instance-wise Randomized Smoothing for Improved Robustness and
Accuracy [9.50143683501477]
Insta-RSは、テスト例にカスタマイズされたガウス分散を割り当てるマルチスタート検索アルゴリズムである。
Insta-RS Trainは、各トレーニング例のノイズレベルを適応的に調整し、カスタマイズする新しい2段階トレーニングアルゴリズムです。
本手法は,平均認定半径(ACR)とクリーンデータ精度を有意に向上させることを示した。
論文 参考訳(メタデータ) (2021-03-07T19:46:07Z) - Neural Model-based Optimization with Right-Censored Observations [42.530925002607376]
ニューラルネットワーク(NN)は、モデルベースの最適化手順のコアでうまく機能することが実証されている。
トレーニングされた回帰モデルは,いくつかのベースラインよりも優れた予測品質が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T07:32:30Z) - On Calibration of Mixup Training for Deep Neural Networks [1.6242924916178283]
我々は、Mixupが必ずしも校正を改善していないという実証的な証拠を論じ、提示する。
我々の損失はベイズ決定理論にインスパイアされ、確率的モデリングの損失を設計するための新しいトレーニングフレームワークが導入された。
キャリブレーション性能を一貫した改善を施した最先端の精度を提供する。
論文 参考訳(メタデータ) (2020-03-22T16:54:31Z) - Intra Order-preserving Functions for Calibration of Multi-Class Neural
Networks [54.23874144090228]
一般的なアプローチは、元のネットワークの出力をキャリブレーションされた信頼スコアに変換する、ポストホックキャリブレーション関数を学ぶことである。
以前のポストホックキャリブレーション技術は単純なキャリブレーション機能でしか機能しない。
本稿では,順序保存関数のクラスを表すニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-15T12:57:21Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。