論文の概要: Enhancing Bidirectional Sign Language Communication: Integrating YOLOv8 and NLP for Real-Time Gesture Recognition & Translation
- arxiv url: http://arxiv.org/abs/2411.13597v1
- Date: Mon, 18 Nov 2024 19:55:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:20:23.360296
- Title: Enhancing Bidirectional Sign Language Communication: Integrating YOLOv8 and NLP for Real-Time Gesture Recognition & Translation
- Title(参考訳): 双方向手話コミュニケーションの強化:リアルタイムジェスチャー認識・翻訳のためのYOLOv8とNLPの統合
- Authors: Hasnat Jamil Bhuiyan, Mubtasim Fuad Mozumder, Md. Rabiul Islam Khan, Md. Sabbir Ahmed, Nabuat Zaman Nahim,
- Abstract要約: We have used the You Only Look Once (YOLO) model and Convolutional Neural Network (CNN) model。
YOLOモデルはリアルタイムに実行され、生のビデオストリームから識別的空間時間特性を自動的に抽出する。
ここでのCNNモデルは、手話検出のためにリアルタイムに実行される。
- 参考スコア(独自算出の注目度): 1.08935184607501
- License:
- Abstract: The primary concern of this research is to take American Sign Language (ASL) data through real time camera footage and be able to convert the data and information into text. Adding to that, we are also putting focus on creating a framework that can also convert text into sign language in real time which can help us break the language barrier for the people who are in need. In this work, for recognising American Sign Language (ASL), we have used the You Only Look Once(YOLO) model and Convolutional Neural Network (CNN) model. YOLO model is run in real time and automatically extracts discriminative spatial-temporal characteristics from the raw video stream without the need for any prior knowledge, eliminating design flaws. The CNN model here is also run in real time for sign language detection. We have introduced a novel method for converting text based input to sign language by making a framework that will take a sentence as input, identify keywords from that sentence and then show a video where sign language is performed with respect to the sentence given as input in real time. To the best of our knowledge, this is a rare study to demonstrate bidirectional sign language communication in real time in the American Sign Language (ASL).
- Abstract(参考訳): この研究の主な関心事は、リアルタイムカメラ映像を通してアメリカ手話(ASL)データを取り込み、データと情報をテキストに変換することである。
さらに私たちは,テキストを手話に変換するフレームワークの開発にも力を入れています。
本研究では,アメリカ手話(ASL)の認識のために,You Only Look Once(YOLO)モデルと畳み込みニューラルネットワーク(CNN)モデルを用いた。
YOLOモデルはリアルタイムに実行され、事前の知識を必要とせずに生のビデオストリームから識別的空間時間特性を自動的に抽出し、設計上の欠陥を除去する。
ここでのCNNモデルは、手話検出のためにリアルタイムに実行される。
文を入力として取り、その文からキーワードを識別し、入力として与えられた文に対して手話が実行された動画をリアルタイムに表示するフレームワークを構築することで、テキストベースの入力を手話に変換する新しい方法を紹介した。
我々の知る限りでは、アメリカ手話(ASL)において双方向手話通信をリアルタイムで実演することは稀である。
関連論文リスト
- Enhanced Sign Language Translation between American Sign Language (ASL) and Indian Sign Language (ISL) Using LLMs [0.2678472239880052]
我々は、アメリカ手話の利用者と話し言葉とインド手話(ISL)の利用者の間に橋渡しを提供することを目標とする研究を思いついた。
このフレームワークは、ジェスチャーの可変性の自動処理や、ASLとISLの言語的違いを克服するといった重要な課題に対処する。
論文 参考訳(メタデータ) (2024-11-19T17:45:12Z) - EvSign: Sign Language Recognition and Translation with Streaming Events [59.51655336911345]
イベントカメラは、動的手の動きを自然に知覚し、手話作業のための豊富な手作業の手がかりを提供する。
イベントベースSLRおよびSLTタスクのための効率的なトランスフォーマーベースフレームワークを提案する。
計算コストは0.34%に過ぎず,既存の最先端手法に対して良好に機能する。
論文 参考訳(メタデータ) (2024-07-17T14:16:35Z) - SignCLIP: Connecting Text and Sign Language by Contrastive Learning [39.72545568965546]
SignCLIPは、大規模な多言語ビデオテキストペアから手話処理に有用な視覚表現を学習する効率的な方法である。
SpreadthesignでSignCLIPを事前訓練し,最大44の手話で5万本のビデオクリップを収録した手話辞書を作成した。
我々は、音声言語テキストと手話ポーズによって形成される潜伏空間を分析し、さらなる言語学的洞察を提供する。
論文 参考訳(メタデータ) (2024-07-01T13:17:35Z) - T2S-GPT: Dynamic Vector Quantization for Autoregressive Sign Language Production from Text [59.57676466961787]
本稿では,手話における情報密度に基づいて符号化長を調整できる新しい動的ベクトル量子化(DVA-VAE)モデルを提案する。
PHOENIX14Tデータセットを用いて実験を行い,提案手法の有効性を示した。
我々は,486時間の手話ビデオ,音声,文字起こしテキストを含むドイツ語手話データセットPHOENIX-Newsを提案する。
論文 参考訳(メタデータ) (2024-06-11T10:06:53Z) - DiffSLVA: Harnessing Diffusion Models for Sign Language Video
Anonymization [33.18321022815901]
テキスト誘導手話ビデオ匿名化のための新しい手法であるDiffSLVAを紹介する。
我々は,署名された言語で言語情報を伝達するために重要な,表情をキャプチャーする専用のモジュールを開発する。
この革新的な方法論は、初めて、現実世界のアプリケーションに使用できる言語ビデオの匿名化を可能にする。
論文 参考訳(メタデータ) (2023-11-27T18:26:19Z) - CiCo: Domain-Aware Sign Language Retrieval via Cross-Lingual Contrastive
Learning [38.83062453145388]
手話検索は、テキスト・トゥ・サイン・ビデオ(T2V)検索とサイン・ビデオ・トゥ・テキスト(V2T)検索の2つのサブタスクで構成される。
我々は手話と自然言語の両方の言語特性を考慮し、さらに粒度の細かい言語間マッピングを同時に同定する。
我々のフレームワークは、様々なデータセットに対して大きなマージンで先駆的手法より優れています。
論文 参考訳(メタデータ) (2023-03-22T17:59:59Z) - Fine-tuning of sign language recognition models: a technical report [0.0]
我々は、他の手話からのデータセットの微調整が、手話認識の品質向上に役立つか、そしてGPUを使わずにリアルタイムで手話認識が可能かどうか、という2つの質問に焦点をあてる。
モデル学習実験を再現し、モデルをONNXフォーマットに変換し、リアルタイムジェスチャー認識のための推論を行うコードを提供する。
論文 参考訳(メタデータ) (2023-02-15T14:36:18Z) - A Simple Multi-Modality Transfer Learning Baseline for Sign Language
Translation [54.29679610921429]
既存の手話データセットには、約10K-20Kの手話ビデオ、グロスアノテーション、テキストが含まれています。
したがって、データは効果的な手話翻訳モデルの訓練のボトルネックとなる。
この単純なベースラインは、2つの手話翻訳ベンチマークで過去の最先端の結果を上回っている。
論文 参考訳(メタデータ) (2022-03-08T18:59:56Z) - SimulSLT: End-to-End Simultaneous Sign Language Translation [55.54237194555432]
既存の手話翻訳手法では、翻訳を開始する前にすべてのビデオを読む必要がある。
我々は,最初のエンドツーエンド同時手話翻訳モデルであるSimulSLTを提案する。
SimulSLTは最新のエンドツーエンドの非同時手話翻訳モデルを超えるBLEUスコアを達成する。
論文 参考訳(メタデータ) (2021-12-08T11:04:52Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
手話は聴覚障害者や言語障害者のコミュニケーションに使用される。
また,RGB-D法と組み合わせて最先端の性能を実現することで,Skeletonに基づく音声認識が普及しつつある。
近年のボディポーズ推定用citejin 2020wholeの開発に触発されて,全身キーポイントと特徴に基づく手話認識を提案する。
論文 参考訳(メタデータ) (2021-03-16T03:38:17Z) - Transferring Cross-domain Knowledge for Video Sign Language Recognition [103.9216648495958]
単語レベルの手話認識(WSLR)は手話解釈の基本課題である。
ドメイン不変の視覚概念を学習し、サブタイトルのニュースサインの知識を伝達することでWSLRモデルを肥大化させる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-03-08T03:05:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。