SuPLE: Robot Learning with Lyapunov Rewards
- URL: http://arxiv.org/abs/2411.13613v1
- Date: Wed, 20 Nov 2024 03:20:50 GMT
- Title: SuPLE: Robot Learning with Lyapunov Rewards
- Authors: Phu Nguyen, Daniel Polani, Stas Tiomkin,
- Abstract summary: We use the properties of the dynamics to produce system-appropriate reward without adding external assumptions.
We demonstrate that the Sum of the Positive Lyapunov Exponents' (SuPLE) is a strong candidate for the design of such a reward.
It eliminates the need to start the training trajectories at arbitrary states, also known as auxiliary exploration.
- Score: 4.424170214926035
- License:
- Abstract: The reward function is an essential component in robot learning. Reward directly affects the sample and computational complexity of learning, and the quality of a solution. The design of informative rewards requires domain knowledge, which is not always available. We use the properties of the dynamics to produce system-appropriate reward without adding external assumptions. Specifically, we explore an approach to utilize the Lyapunov exponents of the system dynamics to generate a system-immanent reward. We demonstrate that the `Sum of the Positive Lyapunov Exponents' (SuPLE) is a strong candidate for the design of such a reward. We develop a computational framework for the derivation of this reward, and demonstrate its effectiveness on classical benchmarks for sample-based stabilization of various dynamical systems. It eliminates the need to start the training trajectories at arbitrary states, also known as auxiliary exploration. While the latter is a common practice in simulated robot learning, it is unpractical to consider to use it in real robotic systems, since they typically start from natural rest states such as a pendulum at the bottom, a robot on the ground, etc. and can not be easily initialized at arbitrary states. Comparing the performance of SuPLE to commonly-used reward functions, we observe that the latter fail to find a solution without auxiliary exploration, even for the task of swinging up the double pendulum and keeping it stable at the upright position, a prototypical scenario for multi-linked robots. SuPLE-induced rewards for robot learning offer a novel route for effective robot learning in typical as opposed to highly specialized or fine-tuned scenarios. Our code is publicly available for reproducibility and further research.
Related papers
- Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEAR enables robots to be placed in real-world environments and left to train autonomously without interruption.
System streams robot experience to a web interface only requiring occasional asynchronous feedback from remote, crowdsourced, non-expert humans.
arXiv Detail & Related papers (2023-10-31T16:43:56Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - What Matters to You? Towards Visual Representation Alignment for Robot
Learning [81.30964736676103]
When operating in service of people, robots need to optimize rewards aligned with end-user preferences.
We propose Representation-Aligned Preference-based Learning (RAPL), a method for solving the visual representation alignment problem.
arXiv Detail & Related papers (2023-10-11T23:04:07Z) - On-Robot Bayesian Reinforcement Learning for POMDPs [16.667924736270415]
This paper advances Bayesian reinforcement learning for robotics by proposing a specialized framework for physical systems.
We capture this knowledge in a factored representation, then demonstrate the posterior factorizes in a similar shape, and ultimately formalize the model in a Bayesian framework.
We then introduce a sample-based online solution method, based on Monte-Carlo tree search and particle filtering, specialized to solve the resulting model.
arXiv Detail & Related papers (2023-07-22T01:16:29Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - SAGCI-System: Towards Sample-Efficient, Generalizable, Compositional,
and Incremental Robot Learning [41.19148076789516]
We introduce a systematic learning framework called SAGCI-system towards achieving the above four requirements.
Our system first takes the raw point clouds gathered by the camera mounted on the robot's wrist as the inputs and produces initial modeling of the surrounding environment represented as a URDF.
The robot then utilizes the interactive perception to interact with the environments to online verify and modify the URDF.
arXiv Detail & Related papers (2021-11-29T16:53:49Z) - Semi-supervised reward learning for offline reinforcement learning [71.6909757718301]
Training agents usually requires reward functions, but rewards are seldom available in practice and their engineering is challenging and laborious.
We propose semi-supervised learning algorithms that learn from limited annotations and incorporate unlabelled data.
In our experiments with a simulated robotic arm, we greatly improve upon behavioural cloning and closely approach the performance achieved with ground truth rewards.
arXiv Detail & Related papers (2020-12-12T20:06:15Z) - Feature Expansive Reward Learning: Rethinking Human Input [31.413656752926208]
We introduce a new type of human input in which the person guides the robot from states where the feature being taught is highly expressed to states where it is not.
We propose an algorithm for learning the feature from the raw state space and integrating it into the reward function.
arXiv Detail & Related papers (2020-06-23T17:59:34Z) - Active Preference-Based Gaussian Process Regression for Reward Learning [42.697198807877925]
One common approach is to learn reward functions from collected expert demonstrations.
We present a preference-based learning approach, where as an alternative, the human feedback is only in the form of comparisons between trajectories.
Our approach enables us to tackle both inflexibility and data-inefficiency problems within a preference-based learning framework.
arXiv Detail & Related papers (2020-05-06T03:29:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.