Non-Bloch self-energy of dissipative interacting fermions
- URL: http://arxiv.org/abs/2411.13661v1
- Date: Wed, 20 Nov 2024 19:08:24 GMT
- Title: Non-Bloch self-energy of dissipative interacting fermions
- Authors: He-Ran Wang, Zijian Wang, Zhong Wang,
- Abstract summary: The non-Hermitian skin effect describes the phenomenon of exponential localization of single-particle eigenstates near the boundary of the system.
We explore its generalization to the many-body regime by investigating interacting fermions in open quantum systems.
Our formulation provides a quantitative tool for investigating dissipative interacting fermions with non-Hermitian skin effect.
- Score: 4.41737598556146
- License:
- Abstract: The non-Hermitian skin effect describes the phenomenon of exponential localization of single-particle eigenstates near the boundary of the system. We explore its generalization to the many-body regime by investigating interacting fermions in open quantum systems. Therein, the elementary excitations from the ``vacuum'' (steady state) are given by two types of dissipative quasi-particles composed of single-fermion operators. We perturbatively calculate the self-energy of these quasi-particles in the presence of interactions, and utilize the non-Bloch band theory to develop an exact integral formula, which is further simplified by imposing complex momentum conservation. The formula allows calculating the Liouvillian gap modified by interactions with high precision, as demonstrated by comparison to numerical results. Furthermore, our results show that interactions can even enhance the non-reciprocity of fermion hoppings, contrary to the conventional viewpoint from the Pauli exclusion principle. Our formulation provides a quantitative tool for investigating dissipative interacting fermions with non-Hermitian skin effect, and generalizes the Fermi liquid theory to open quantum systems in the context of diagrammatic perturbation theory.
Related papers
- Generalization of the exact Eriksen and exponential operators of the Foldy-Wouthuysen transformation to arbitrary-spin particles in nonstationary fields [55.2480439325792]
We use the Foldy-Wouthuysen transformation which allows one to obtain the Schr"odinger picture of relativistic quantum mechanics.
Unlike previous publications, we determine exact Eriksen and exponential operators of the Foldy-Wouthuysen transformation.
arXiv Detail & Related papers (2024-10-27T18:41:50Z) - Theory of non-Hermitian fermionic superfluidity on a honeycomb lattice:
Interplay between exceptional manifolds and van Hove Singularity [0.0]
We study the non-Hermitian fermionic superfluidity subject to dissipation of Cooper pairs on a honeycomb lattice.
We demonstrate the emergence of the dissipation-induced superfluid phase that is anomalously enlarged by a cusp on the phase boundary.
arXiv Detail & Related papers (2023-09-28T06:21:55Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Fate of entanglement in one-dimensional fermion liquid with coherent
particle loss [2.5081221761654757]
We study the dynamic properties of a one-dimensional fermionic system with adjacent-lattice particle loss.
Our findings provide valuable insights for near-term quantum devices and the quantum simulation of open systems.
arXiv Detail & Related papers (2021-12-27T07:24:33Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Uncertainty relations for the Hohenberg-Kohn theorem [0.0]
The Hohenberg-Kohn theorem for non-relativistic, interacting many-body Schr"odinger systems is well-known.
However, the physical mechanism or principle which enables this theorem in nature has not been understood.
Here, we obtain effective canonical operators in the interacting many-body problem.
arXiv Detail & Related papers (2020-10-04T19:00:22Z) - Bose-Fermi dualities for arbitrary one-dimensional quantum systems in
the universal low energy regime [0.2741266294612775]
I consider general interacting systems of quantum particles in one spatial dimension.
These consist of bosons or fermions, which can have any number of components, arbitrary spin or a combination thereof.
The single-particle dispersion can be Galilean (non-relativistic), relativistic, or have any other form that may be relevant for the continuum limit of lattice theories.
arXiv Detail & Related papers (2020-09-01T18:00:04Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Ramsey interferometry of non-Hermitian quantum impurities [0.0]
We propose a protocol to measure via interferometry a generalised Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself.
For strong dissipation we uncover the phenomenology of a quantum many-body Zeno effect.
arXiv Detail & Related papers (2020-03-16T18:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.