Differentially Private Learning Beyond the Classical Dimensionality Regime
- URL: http://arxiv.org/abs/2411.13682v2
- Date: Wed, 19 Feb 2025 03:35:35 GMT
- Title: Differentially Private Learning Beyond the Classical Dimensionality Regime
- Authors: Cynthia Dwork, Pranay Tankala, Linjun Zhang,
- Abstract summary: We study differentially private learning in the proportional dimensionality regime.
We provide theoretical estimates of the error of several well-studied differentially private algorithms.
- Score: 19.030954416586596
- License:
- Abstract: We initiate the study of differentially private learning in the proportional dimensionality regime, in which the number of data samples $n$ and problem dimension $d$ approach infinity at rates proportional to one another, meaning that $d/n\to\delta$ as $n\to\infty$ for an arbitrary, given constant $\delta\in(0,\infty)$. This setting is significantly more challenging than that of all prior theoretical work in high-dimensional differentially private learning, which, despite the name, has assumed that $\delta = 0$ or is sufficiently small for problems of sample complexity $O(d)$, a regime typically considered "low-dimensional" or "classical" by modern standards in high-dimensional statistics. We provide sharp theoretical estimates of the error of several well-studied differentially private algorithms for robust linear regression and logistic regression, including output perturbation, objective perturbation, and noisy stochastic gradient descent, in the proportional dimensionality regime. The $1+o(1)$ factor precision of our error estimates enables a far more nuanced understanding of the price of privacy of these algorithms than that afforded by existing, coarser analyses, which are essentially vacuous in the regime we consider. Using our estimates, we discover a previously unobserved "double descent"-like phenomenon in the training error of objective perturbation for robust linear regression. We also identify settings in which output perturbation outperforms objective perturbation on average, and vice versa, demonstrating that the relative performance of these algorithms is less clear-cut than suggested by prior work. To prove our main theorems, we introduce several probabilistic tools that have not previously been used to analyze differentially private learning algorithms, such as a modern Gaussian comparison inequality and recent universality laws with origins in statistical physics.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - On the Geometry of Regularization in Adversarial Training: High-Dimensional Asymptotics and Generalization Bounds [11.30047438005394]
This work investigates the question of how to choose the regularization norm $lVert cdot rVert$ in the context of high-dimensional adversarial training for binary classification.
We quantitatively characterize the relationship between perturbation size and the optimal choice of $lVert cdot rVert$, confirming the intuition that, in the data scarce regime, the type of regularization becomes increasingly important for adversarial training as perturbations grow in size.
arXiv Detail & Related papers (2024-10-21T14:53:12Z) - A Statistical Theory of Regularization-Based Continual Learning [10.899175512941053]
We provide a statistical analysis of regularization-based continual learning on a sequence of linear regression tasks.
We first derive the convergence rate for the oracle estimator obtained as if all data were available simultaneously.
A byproduct of our theoretical analysis is the equivalence between early stopping and generalized $ell$-regularization.
arXiv Detail & Related papers (2024-06-10T12:25:13Z) - Analysis of Bootstrap and Subsampling in High-dimensional Regularized Regression [29.57766164934947]
We investigate popular resampling methods for estimating the uncertainty of statistical models.
We provide a tight description of the biases and variances estimated by these methods in the context of generalized linear models.
arXiv Detail & Related papers (2024-02-21T08:50:33Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
quantile regression tends to emphunder-cover than the desired coverage level in reality.
We prove that quantile regression suffers from an inherent under-coverage bias.
Our theory reveals that this under-coverage bias stems from a certain high-dimensional parameter estimation error.
arXiv Detail & Related papers (2021-06-10T06:11:55Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Squared $\ell_2$ Norm as Consistency Loss for Leveraging Augmented Data
to Learn Robust and Invariant Representations [76.85274970052762]
Regularizing distance between embeddings/representations of original samples and augmented counterparts is a popular technique for improving robustness of neural networks.
In this paper, we explore these various regularization choices, seeking to provide a general understanding of how we should regularize the embeddings.
We show that the generic approach we identified (squared $ell$ regularized augmentation) outperforms several recent methods, which are each specially designed for one task.
arXiv Detail & Related papers (2020-11-25T22:40:09Z) - Estimating Principal Components under Adversarial Perturbations [25.778123431786653]
We study a natural model of robustness for high-dimensional statistical estimation problems.
Our model is motivated by emerging paradigms such as low precision machine learning and adversarial training.
arXiv Detail & Related papers (2020-05-31T20:27:19Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
This paper establishes a precise high-dimensional theory for boosting on separable data.
Under a class of statistical models, we provide an exact analysis of the universality error of boosting.
We also explicitly pin down the relation between the boosting test error and the optimal Bayes error.
arXiv Detail & Related papers (2020-02-05T00:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.