論文の概要: A Collaborative Ensemble Framework for CTR Prediction
- arxiv url: http://arxiv.org/abs/2411.13700v1
- Date: Wed, 20 Nov 2024 20:38:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:19:41.931104
- Title: A Collaborative Ensemble Framework for CTR Prediction
- Title(参考訳): CTR予測のための協調型アンサンブルフレームワーク
- Authors: Xiaolong Liu, Zhichen Zeng, Xiaoyi Liu, Siyang Yuan, Weinan Song, Mengyue Hang, Yiqun Liu, Chaofei Yang, Donghyun Kim, Wen-Yen Chen, Jiyan Yang, Yiping Han, Rong Jin, Bo Long, Hanghang Tong, Philip S. Yu,
- Abstract要約: 我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
- 参考スコア(独自算出の注目度): 73.59868761656317
- License:
- Abstract: Recent advances in foundation models have established scaling laws that enable the development of larger models to achieve enhanced performance, motivating extensive research into large-scale recommendation models. However, simply increasing the model size in recommendation systems, even with large amounts of data, does not always result in the expected performance improvements. In this paper, we propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models, each with its own embedding table, to capture unique feature interaction patterns. Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning, where models iteratively refine their predictions. To dynamically balance contributions from each model, we introduce a confidence-based fusion mechanism using general softmax, where model confidence is computed via negation entropy. This design ensures that more confident models have a greater influence on the final prediction while benefiting from the complementary strengths of other models. We validate our framework on three public datasets (AmazonElectronics, TaobaoAds, and KuaiVideo) as well as a large-scale industrial dataset from Meta, demonstrating its superior performance over individual models and state-of-the-art baselines. Additionally, we conduct further experiments on the Criteo and Avazu datasets to compare our method with the multi-embedding paradigm. Our results show that our framework achieves comparable or better performance with smaller embedding sizes, offering a scalable and efficient solution for CTR prediction tasks.
- Abstract(参考訳): 基礎モデルの最近の進歩は、大規模モデルの開発がパフォーマンスの向上を実現するためのスケーリング法を確立し、大規模レコメンデーションモデルに関する広範な研究を動機付けている。
しかし、大量のデータであっても、リコメンデーションシステムにおけるモデルサイズを単純に増やすだけでは、期待される性能改善をもたらすとは限らない。
本稿では,CETNet(Collaborative Ensemble Training Network)という新しいフレームワークを提案する。
ナイーブなモデルスケーリングとは異なり、我々のアプローチは、モデルが予測を反復的に洗練する協調学習を通じて、多様性とコラボレーションを強調します。
各モデルからのコントリビューションを動的にバランスさせるため,一般ソフトマックスを用いた信頼に基づく融合機構を導入し,モデルの信頼度を否定エントロピーを用いて計算する。
この設計により、他のモデルの相補的な強みから恩恵を受けながら、より確実なモデルが最終的な予測により大きな影響を与えることが保証される。
当社のフレームワークは,3つのパブリックデータセット(AmazonElectronics,TaobaoAds,KuaiVideo)とMetaの大規模産業データセットで検証し,個々のモデルや最先端のベースラインよりも優れたパフォーマンスを示している。
さらに,CriteoデータセットとAvazuデータセットのさらなる実験を行い,本手法とマルチ埋め込みパラダイムを比較した。
我々のフレームワークは,より小さな埋め込みサイズで同等あるいは優れた性能を実現し,CTR予測タスクのスケーラブルで効率的なソリューションを提供する。
関連論文リスト
- Fitting Multiple Machine Learning Models with Performance Based Clustering [8.763425474439552]
従来の機械学習のアプローチは、データが単一の生成メカニズムから来ると仮定している。
本稿では,特徴値と対象値の関係に応じてデータをグループ化することで,この仮定を解消するクラスタリングフレームワークを提案する。
フレームワークをストリーミングデータを持つアプリケーションに拡張し、モデルのアンサンブルを使用して結果を生成する。
論文 参考訳(メタデータ) (2024-11-10T19:38:35Z) - Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
本稿では,大規模言語モデル間の類似性や関連性の程度であるモデル親和性を紹介する。
モデル統合後の性能向上とモデル親和性の間には,一定の関係があることが判明した。
我々は新しいモデルマージ戦略を提案する。Top-k Greedy Merging with Model Kinship。
論文 参考訳(メタデータ) (2024-10-16T14:29:29Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
統合データモデル共同開発に適した新しいサンドボックススイートを提案する。
このサンドボックスは包括的な実験プラットフォームを提供し、データとモデルの両方の迅速なイテレーションと洞察駆動による改善を可能にする。
また、徹底的なベンチマークから得られた実りある洞察を明らかにし、データ品質、多様性、モデル行動の間の重要な相互作用に光を当てています。
論文 参考訳(メタデータ) (2024-07-16T14:40:07Z) - A Lightweight Feature Fusion Architecture For Resource-Constrained Crowd
Counting [3.5066463427087777]
クラウドカウントモデルの汎用性を高めるために,2つの軽量モデルを導入する。
これらのモデルは、MobileNetとMobileViTという2つの異なるバックボーンを持ちながら、同じダウンストリームアーキテクチャを維持している。
隣接特徴融合を利用して、事前学習モデル(PTM)から多様な特徴を抽出し、その後、シームレスにこれらの特徴を組み合わせる。
論文 参考訳(メタデータ) (2024-01-11T15:13:31Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - Deep incremental learning models for financial temporal tabular datasets
with distribution shifts [0.9790236766474201]
このフレームワークは、単純な基本的なビルディングブロック(決定木)を使用して、必要な複雑さの自己相似モデルを構築する。
我々は,NumeraiデータセットでトレーニングしたXGBoostモデルを用いて提案手法を実証し,異なるモデルスナップショット上での2層のXGBoostモデルの深部アンサンブルが高品質な予測を提供することを示す。
論文 参考訳(メタデータ) (2023-03-14T14:10:37Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - CAMERO: Consistency Regularized Ensemble of Perturbed Language Models
with Weight Sharing [83.63107444454938]
本稿では,CAMEROと呼ばれる摂動モデルに基づく一貫性規則化アンサンブル学習手法を提案する。
具体的には、すべてのモデルで底層重みを共有し、異なるモデルの隠れ表現に異なる摂動を適用し、モデルの多様性を効果的に促進することができる。
大規模言語モデルを用いた実験により,CAMEROはアンサンブルモデルの一般化性能を大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-04-13T19:54:51Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
アンサンブルは高い精度で単一モデルより優れており、計算に要する総FLOPは少ない。
これは、アンサンブルの出力の多様性がより大きなモデルを訓練するよりも効率的であることを示す興味深い観察結果である。
論文 参考訳(メタデータ) (2020-05-01T18:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。