論文の概要: Federated Continual Learning for Edge-AI: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2411.13740v1
- Date: Wed, 20 Nov 2024 22:49:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:19:53.715475
- Title: Federated Continual Learning for Edge-AI: A Comprehensive Survey
- Title(参考訳): Edge-AIのためのフェデレーション継続的学習: 総合的な調査
- Authors: Zi Wang, Fei Wu, Feng Yu, Yurui Zhou, Jia Hu, Geyong Min,
- Abstract要約: Edge-AIでは、連合型連続学習(FCL)が命令型フレームワークとして登場している。
FCLは、動的および分散環境での学習モデルの安定的で信頼性の高いパフォーマンスを保証することを目的としている。
連立クラス連続学習,連立ドメイン連続学習,連立タスク連続学習の3つのタスク特性に基づくFCL手法について検討した。
- 参考スコア(独自算出の注目度): 28.944063155195753
- License:
- Abstract: Edge-AI, the convergence of edge computing and artificial intelligence (AI), has become a promising paradigm that enables the deployment of advanced AI models at the network edge, close to users. In Edge-AI, federated continual learning (FCL) has emerged as an imperative framework, which fuses knowledge from different clients while preserving data privacy and retaining knowledge from previous tasks as it learns new ones. By so doing, FCL aims to ensure stable and reliable performance of learning models in dynamic and distributed environments. In this survey, we thoroughly review the state-of-the-art research and present the first comprehensive survey of FCL for Edge-AI. We categorize FCL methods based on three task characteristics: federated class continual learning, federated domain continual learning, and federated task continual learning. For each category, an in-depth investigation and review of the representative methods are provided, covering background, challenges, problem formalisation, solutions, and limitations. Besides, existing real-world applications empowered by FCL are reviewed, indicating the current progress and potential of FCL in diverse application domains. Furthermore, we discuss and highlight several prospective research directions of FCL such as algorithm-hardware co-design for FCL and FCL with foundation models, which could provide insights into the future development and practical deployment of FCL in the era of Edge-AI.
- Abstract(参考訳): エッジコンピューティングと人工知能(AI)の統合であるEdge-AIは、ユーザに近いネットワークエッジに高度なAIモデルのデプロイを可能にする、有望なパラダイムになっています。
Edge-AIでは、フェデレーション付き連続学習(FCL)が命令型フレームワークとして登場し、データプライバシを保ちながら、異なるクライアントからの知識を融合し、新しいタスクを学ぶ際に、以前のタスクからの知識を保持する。
これにより、FCLは動的および分散環境での学習モデルの安定的で信頼性の高いパフォーマンスを確保することを目指している。
本調査では、最先端の研究を徹底的にレビューし、Edge-AIのためのFCLに関する最初の総合的な調査を提示する。
本稿では,3つのタスク特性に基づいてFCL手法を分類する: 連立クラス連続学習,連立ドメイン連続学習,連立タスク連続学習。
各カテゴリについて、背景、課題、問題の形式化、解決策、制限を網羅した詳細な調査と代表的な手法のレビューが提供される。
さらに、FCLによって強化された既存の現実世界のアプリケーションについてもレビューし、多様なアプリケーションドメインにおけるFCLの現在の進歩と可能性を示している。
さらに,FCL と FCL のアルゴリズムハードウェア共同設計や基礎モデルなど FCL の今後の研究方向性を議論し,注目する。
関連論文リスト
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Recent Advances of Foundation Language Models-based Continual Learning: A Survey [31.171203978742447]
基礎言語モデル (LM) は自然言語処理 (NLP) とコンピュータビジョン (CV) の分野において重要な成果を上げている。
しかし、破滅的な忘れ物のため、人間のような継続的学習をエミュレートすることはできない。
従来の知識を忘れずに新しいタスクに適応できるように、様々な連続学習(CL)ベースの方法論が開発されている。
論文 参考訳(メタデータ) (2024-05-28T23:32:46Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Federated Continual Learning via Knowledge Fusion: A Survey [33.74289759536269]
FCL(Federated Continual Learning)は、フェデレートされた学習環境と継続的な学習環境の両方において、モデル学習に対処する新たなパラダイムである。
FCLの主な目的は、異なるクライアントからの異種知識を融合し、新しいタスクを学習しながら、以前のタスクの知識を保持することである。
本研究は,フェデレーション学習と継続学習をまず重視し,その統合,すなわちFCL,特にFCLを知識融合を通じて議論する。
論文 参考訳(メタデータ) (2023-12-27T08:47:39Z) - A Survey on Federated Unlearning: Challenges, Methods, and Future Directions [21.90319100485268]
近年、忘れられる権利(RTBF)の概念は、デジタル信頼とAI安全のためのデータプライバシの重要な側面となっている。
マシン・アンラーニング(MU)は、MLモデルによって識別可能な情報を選択的に排除できる、かなりの注目を集めている。
FUは、フェデレートされた学習環境におけるデータ消去の課題に直面している。
論文 参考訳(メタデータ) (2023-10-31T13:32:00Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
本研究では,連続学習のタスク非依存的な視点を取り入れ,階層的情報理論の最適性原理を考案する。
我々は,情報処理経路の集合を作成することで,忘れを緩和する,Mixture-of-Variational-Experts層と呼ばれるニューラルネットワーク層を提案する。
既存の連続学習アルゴリズムのようにタスク固有の知識を必要としない。
論文 参考訳(メタデータ) (2022-11-14T19:53:15Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey [53.73359052511171]
強化学習(Reinforcement Learning, RL)は、エージェントが限られた環境フィードバックしか持たないシーケンシャルな意思決定タスクに対処するための一般的なパラダイムである。
本稿では、RLにおけるカリキュラム学習(CL)の枠組みを提案し、既存のCLメソッドを仮定、能力、目標の観点から調査・分類する。
論文 参考訳(メタデータ) (2020-03-10T20:41:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。