Characterizing the transition from topology to chaos in a kicked quantum system
- URL: http://arxiv.org/abs/2411.13831v1
- Date: Thu, 21 Nov 2024 04:35:16 GMT
- Title: Characterizing the transition from topology to chaos in a kicked quantum system
- Authors: J. Mumford, H. -Y. Xie, R. J. Lewis-Swan,
- Abstract summary: We study the transition from topology to chaos in a periodically driven system consisting of a quantum top and a spin-1/2 particle.
For small kick strengths, localized topologically protected bound states exist, and as the kick strengths increase, these states proliferate.
At large kick strengths they gradually delocalize in stages, eventually becoming random orthonormal vectors as chaos emerges.
- Score: 0.0
- License:
- Abstract: This work theoretically investigates the transition from topology to chaos in a periodically driven system consisting of a quantum top coupled to a spin-1/2 particle. The system is driven by two alternating interaction kicks per period. For small kick strengths, localized topologically protected bound states exist, and as the kick strengths increase, these states proliferate. However, at large kick strengths they gradually delocalize in stages, eventually becoming random orthonormal vectors as chaos emerges. We identify the delocalization of the bound states as a finite size effect where their proliferation leads to their eventual overlap. This insight allows us to make analytic predictions for the onset and full emergence of chaos which are supported by numerical results of the quasi-energy level spacing ratio and R\'{e}nyi entropy. A dynamical probe is also proposed to distinguish chaotic from regular behavior.
Related papers
- Dichotomy in the effect of chaos on ergotropy [0.0]
We study ergotropy, the maximum unitarily extractable work from a system, in two quantum chaotic models.
In an ancilla-assisted scenario, chaos enhances ergotropy when the state is known.
In contrast, we establish a negative correlation between chaos and work when the state is unknown.
arXiv Detail & Related papers (2024-09-25T03:28:04Z) - Fock-space delocalization and the emergence of the Porter-Thomas distribution from dual-unitary dynamics [0.0]
chaotic dynamics of quantum many-body systems are expected to quickly randomize any structured initial state.
We study the spreading of an initial product state in Hilbert space under dual-unitary dynamics.
arXiv Detail & Related papers (2024-08-05T18:00:03Z) - Chaotic fluctuations in a universal set of transmon qubit gates [37.69303106863453]
Transmon qubits arise from the quantization of nonlinear resonators.
Fast entangling gates, operating at speeds close to the so-called quantum speed limit, contain transient regimes where the dynamics indeed becomes partially chaotic for just two transmons.
arXiv Detail & Related papers (2023-11-24T16:30:56Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Boundary Chaos: Exact Entanglement Dynamics [0.0]
We compute the dynamics of entanglement in the minimal setup producing ergodic and mixing quantum many-body dynamics.
We show that different classes of impurity interactions lead to very distinct entanglement dynamics.
arXiv Detail & Related papers (2023-01-19T16:58:57Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Multifractality in quasienergy space of coherent states as a signature
of quantum chaos [8.402742655847774]
We show the manifestation of phase space structures in the multifractal properties of coherent states.
By tuning the kicking strength, the system undergoes a transition from regularity to chaos.
The onset of chaos is clearly identified by the phase space averaged multifractal dimensions.
arXiv Detail & Related papers (2021-10-20T11:42:49Z) - Fractal, logarithmic and volume-law entangled non-thermal steady states
via spacetime duality [0.0]
We show how a duality transformation between space and time on one hand, and unitarity and non-unitarity on the other, can be used to realize steady state phases of non-unitary dynamics.
In spacetime-duals of chaotic unitary circuits, this mapping allows us to uncover a non-thermal volume-law entangled phase.
We also find novel steady state phases with emphfractal entanglement scaling.
arXiv Detail & Related papers (2021-03-11T18:57:29Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.