Growth of entanglement of generic states under dual-unitary dynamics
- URL: http://arxiv.org/abs/2208.00030v2
- Date: Tue, 9 May 2023 11:36:22 GMT
- Title: Growth of entanglement of generic states under dual-unitary dynamics
- Authors: Alessandro Foligno and Bruno Bertini
- Abstract summary: Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dual-unitary circuits are a class of locally-interacting quantum many-body
systems displaying unitary dynamics also when the roles of space and time are
exchanged. These systems have recently emerged as a remarkable framework where
certain features of many-body quantum chaos can be studied exactly. In
particular, they admit a class of ``solvable" initial states for which, in the
thermodynamic limit, one can access the full non-equilibrium dynamics. This
reveals a surprising property: when a dual-unitary circuit is prepared in a
solvable state the quantum entanglement between two complementary spatial
regions grows at the maximal speed allowed by the local structure of the
evolution. Here we investigate the fate of this property when the system is
prepared in a generic pair-product state. We show that in this case the
entanglement increment during a time step is sub-maximal for finite times,
however, it approaches the maximal value in the infinite-time limit. This
statement is proven rigorously for dual-unitary circuits generating high enough
entanglement, while it is argued to hold for the entire class.
Related papers
- Entanglement of Disjoint Intervals in Dual-Unitary Circuits: Exact Results [49.1574468325115]
The growth of the entanglement between a disjoint subsystem and its complement after a quantum quench is regarded as a dynamical chaos indicator.
We show that for almost all dual unitary circuits the entanglement dynamics agrees with what is expected for chaotic systems.
Despite having many conserved charges, charge-conserving dual-unitary circuits are in general not Yang-Baxter integrable.
arXiv Detail & Related papers (2024-08-29T17:45:27Z) - Operator dynamics and entanglement in space-time dual Hadamard lattices [0.0]
Many-body quantum dynamics defined on a spatial lattice and in discrete time -- either as stroboscopic Floquet systems or quantum circuits -- has been an active area of research for several years.
Being discrete in space and time, a natural question arises: when can such a model be viewed as unitarily evolving in space as well as in time?
Models with this property, which sometimes goes by the name space-time duality, have been shown to have a number of interesting features related to entanglement growth and correlations.
arXiv Detail & Related papers (2024-06-06T06:48:43Z) - Solvable entanglement dynamics in quantum circuits with generalized dual
unitarity [0.0]
We study the non-equilibrium dynamics of kicked Ising models in $1+1$ dimensions.
These models give rise to time-evolution equivalent to quantum circuits.
arXiv Detail & Related papers (2023-12-19T15:23:55Z) - Fundamental speed limits on entanglement dynamics of bipartite quantum
systems [0.0]
We derive the speed limits on entanglement using the relative entropy of entanglement and trace-distance entanglement.
We find a lower bound on the time required to generate or degrade a certain amount of entanglement by arbitrary quantum dynamics.
arXiv Detail & Related papers (2023-03-13T18:54:56Z) - Temporal Entanglement in Chaotic Quantum Circuits [62.997667081978825]
The concept of space-evolution (or space-time duality) has emerged as a promising approach for studying quantum dynamics.
We show that temporal entanglement always follows a volume law in time.
This unexpected structure in the temporal entanglement spectrum might be the key to an efficient computational implementation of the space evolution.
arXiv Detail & Related papers (2023-02-16T18:56:05Z) - Circuits of space and time quantum channels [0.0]
We show that noise unbiased around the dual-unitary family leads to exactly solvable models, even if dual-unitarity is strongly violated.
We prove that any channel unital in both space and time directions can be written as an affine combination of a particular class of dual-unitary gates.
arXiv Detail & Related papers (2022-06-24T08:35:17Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Fractal, logarithmic and volume-law entangled non-thermal steady states
via spacetime duality [0.0]
We show how a duality transformation between space and time on one hand, and unitarity and non-unitarity on the other, can be used to realize steady state phases of non-unitary dynamics.
In spacetime-duals of chaotic unitary circuits, this mapping allows us to uncover a non-thermal volume-law entangled phase.
We also find novel steady state phases with emphfractal entanglement scaling.
arXiv Detail & Related papers (2021-03-11T18:57:29Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.