Preparation and observation of anomalous counterpropagating edge states in a periodically driven optical Raman lattice
- URL: http://arxiv.org/abs/2411.13940v2
- Date: Mon, 25 Nov 2024 17:40:41 GMT
- Title: Preparation and observation of anomalous counterpropagating edge states in a periodically driven optical Raman lattice
- Authors: Hongting Hou, Long Zhang,
- Abstract summary: We prepare and detect anomalous counterpropagating edge states in a two-dimensional periodically driven optical Raman lattice.
Results establish a theoretical framework for future experimental explorations of the AFVH phase and topological phenomena associated with its unique edge modes.
- Score: 3.3463067879269865
- License:
- Abstract: Motivated by the recent observation of real-space edge modes with ultracold atoms [Braun et al., Nat. Phys. 20, 1306 (2024)], we investigate the preparation and detection of anomalous counterpropagating edge states -- a defining feature of the anomalous Floquet valley-Hall (AFVH) phase -- in a two-dimensional periodically driven optical Raman lattice. Modeling the atomic cloud with a Gaussian wave packet state, we explore, both analytically and numerically, how the population of edge modes depends on the initial-state parameters. In particular, we reveal that, in addition to the internal spin state, the initial momenta parallel and perpendicular to the boundary play essential roles: they independently control the selective population of edge states across distinct momenta and within separate quasienergy gaps. Furthermore, we examine the wave-packet dynamics of counterpropagating edge states and demonstrate that their characteristic motion is robust against long-range disorder. These results establish a theoretical framework for future experimental explorations of the AFVH phase and topological phenomena associated with its unique edge modes.
Related papers
- Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Wave packet dynamics and edge transport in anomalous Floquet topological
phases [0.0]
An anomalous Floquet topological phase can in general generate more robust chiral edge motion than a Haldane phase.
Our results demonstrate that the rich interplay of wave packet dynamics and topological edge states can serve as a versatile tool in ultracold quantum gases in optical lattices.
arXiv Detail & Related papers (2023-02-16T18:45:49Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Gauge-theoretic origin of Rydberg quantum spin liquids [0.0]
We introduce an exact relation between an Ising-Higgs lattice gauge theory on the kagome lattice and blockaded models on Ruby lattices.
This relation elucidates the origin of previously observed topological spin liquids by directly linking the latter to a deconfined phase of a solvable gauge theory.
arXiv Detail & Related papers (2022-05-25T18:19:26Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Observation of a symmetry-protected topological time crystal with
superconducting qubits [14.264932047880043]
We report the observation of a symmetry-protected topological time crystal implemented with an array of programmable superconducting qubits.
We observe robust long-lived temporal correlations and sub-harmonic temporal response for the edge spins up to 40 driving cycles.
Our work paves the way to exploring peculiar non-equilibrium phases of matter emerged from the interplay between topology and localization as well as periodic driving.
arXiv Detail & Related papers (2021-09-12T18:00:03Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Anomalous mobility edges in one-dimensional quasiperiodic models [4.716325345907193]
A class of mobility edges, dubbed anomalous mobility edges, separate localized states from bands of critical states in quasiperiodic models.
Results shed new light on the localization and critical properties of low-dimensional systems with aperiodic order.
arXiv Detail & Related papers (2021-05-10T18:13:10Z) - Signatures of the $\pi$-mode anomaly in (1+1) dimensional
periodically-driven topological/normal insulator heterostructures [1.8059692880799785]
A pi-mode anomaly is proposed in a periodically-driven topological/normal (TI/NI) heterostructure.
For the first time, we experimentally observed the $pi$-mode domain wall in certain driven frequencies.
Our prediction and observation could pave a new avenue on exploring anomalies in both periodically-driven classical and quantum systems.
arXiv Detail & Related papers (2020-10-08T20:24:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.