Experimental comparison of graph-based approximate nearest neighbor search algorithms on edge devices
- URL: http://arxiv.org/abs/2411.14006v1
- Date: Thu, 21 Nov 2024 10:41:24 GMT
- Title: Experimental comparison of graph-based approximate nearest neighbor search algorithms on edge devices
- Authors: Ali Ganbarov, Jicheng Yuan, Anh Le-Tuan, Manfred Hauswirth, Danh Le-Phuoc,
- Abstract summary: We present an experimental comparison of various graph-based approximate nearest neighbor (ANN) search algorithms deployed on edge devices for real-time nearest neighbor search applications.
- Score: 1.5495593104596401
- License:
- Abstract: In this paper, we present an experimental comparison of various graph-based approximate nearest neighbor (ANN) search algorithms deployed on edge devices for real-time nearest neighbor search applications, such as smart city infrastructure and autonomous vehicles. To the best of our knowledge, this specific comparative analysis has not been previously conducted. While existing research has explored graph-based ANN algorithms, it has often been limited to single-threaded implementations on standard commodity hardware. Our study leverages the full computational and storage capabilities of edge devices, incorporating additional metrics such as insertion and deletion latency of new vectors and power consumption. This comprehensive evaluation aims to provide valuable insights into the performance and suitability of these algorithms for edge-based real-time tracking systems enhanced by nearest-neighbor search algorithms.
Related papers
- CANDY: A Benchmark for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion [8.036012885171166]
We introduce CANDY, a benchmark tailored for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion.
CANDY comprehensively assesses a wide range of AKNN algorithms, integrating advanced optimizations such as machine learning-driven inference.
Our evaluations across diverse datasets demonstrate that simpler AKNN baselines often surpass more complex alternatives in terms of recall and latency.
arXiv Detail & Related papers (2024-06-28T04:46:11Z) - ParlayANN: Scalable and Deterministic Parallel Graph-Based Approximate
Nearest Neighbor Search Algorithms [5.478671305092084]
We introduce ParlayANN, a library of deterministic and parallel graph-based approximate nearest neighbor search algorithms.
We develop novel parallel implementations for four state-of-the-art graph-based ANNS algorithms that scale to billion-scale datasets.
arXiv Detail & Related papers (2023-05-07T19:28:23Z) - A Theoretical Analysis Of Nearest Neighbor Search On Approximate Near
Neighbor Graph [51.880164098926166]
Graph-based algorithms have demonstrated state-of-the-art performance in the nearest neighbor search (NN-Search) problem.
There exists a practice-to-theory gap in the graph-based NN-Search algorithms.
We present theoretical guarantees of solving NN-Search via greedy search on ANN-Graph for low dimensional and dense vectors.
arXiv Detail & Related papers (2023-03-10T21:18:34Z) - FINGER: Fast Inference for Graph-based Approximate Nearest Neighbor
Search [20.928821121591493]
We propose FINGER, a fast inference method to achieve efficient graph search.
FINGER approximates the distance function by estimating angles between neighboring residual vectors with low-rank bases and distribution matching.
Empirically, accelerating a popular graph-based method named HNSW by FINGER is shown to outperform existing graph-based methods by 20%-60% across different benchmark datasets.
arXiv Detail & Related papers (2022-06-22T22:30:46Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
Graph outlier detection is an emerging but crucial machine learning task with numerous applications.
We present the first comprehensive unsupervised node outlier detection benchmark for graphs called UNOD.
arXiv Detail & Related papers (2022-06-21T01:46:38Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
We study a learning-augmented variant of the classical, notoriously hard online graph exploration problem.
We propose an algorithm that naturally integrates predictions into the well-known Nearest Neighbor (NN) algorithm.
arXiv Detail & Related papers (2021-12-10T10:02:31Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Leveraging Reinforcement Learning for evaluating Robustness of KNN
Search Algorithms [0.0]
The problem of finding K-nearest neighbors in the given dataset for a given query point has been worked upon since several years.
In this paper, we survey some novel K-Nearest Neighbor Search approaches that tackles the problem of Search from the perspectives of computations.
In order to evaluate the robustness of a KNNS approach against adversarial points, we propose a generic Reinforcement Learning based framework for the same.
arXiv Detail & Related papers (2021-02-10T16:10:58Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
Adversarial examples are a widely studied phenomenon in machine learning models.
We propose an algorithm for evaluating the adversarial robustness of $k$-nearest neighbor classification.
arXiv Detail & Related papers (2020-11-19T08:49:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.