論文の概要: Exposing Synthetic Speech: Model Attribution and Detection of AI-generated Speech via Audio Fingerprints
- arxiv url: http://arxiv.org/abs/2411.14013v3
- Date: Thu, 04 Sep 2025 12:43:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 14:03:58.608869
- Title: Exposing Synthetic Speech: Model Attribution and Detection of AI-generated Speech via Audio Fingerprints
- Title(参考訳): 合成音声の抽出:音声フィンガープリントによるAI生成音声のモデル属性と検出
- Authors: Matías Pizarro, Mike Laszkiewicz, Shawkat Hesso, Dorothea Kolossa, Asja Fischer,
- Abstract要約: 我々は、AI生成音声を検出するためのトレーニング不要で効果的なアプローチを導入する。
本研究では,(1)オープンワールド環境における単一モデル帰属,(2)クローズドワールド環境における多モデル帰属,(3)合成音声と実音声の検知という3つの重要な課題に取り組む。
- 参考スコア(独自算出の注目度): 11.703509488782345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As speech generation technologies continue to advance in quality and accessibility, the risk of malicious use cases, including impersonation, misinformation, and spoofing, increases rapidly. This work addresses this threat by introducing a simple, training-free, yet effective approach for detecting AI-generated speech and attributing it to its source model. Specifically, we tackle three key tasks: (1) single-model attribution in an open-world setting, where the goal is to determine whether a given audio sample was generated by a specific target neural speech synthesis system (with access only to data from that system); (2) multi-model attribution in a closed-world setting, where the objective is to identify the generating system from a known pool of candidates; and last but not least (3) detection of synthetic versus real speech. Our approach leverages standardized average residuals-the difference between an input audio signal and its filtered version using either a low-pass filter or the EnCodec audio autoencoder. We demonstrate that these residuals consistently capture artifacts introduced by diverse speech synthesis systems, serving as distinctive, model-agnostic fingerprints for attribution. Across extensive experiments, our approach achieves AUROC scores exceeding 99% in most scenarios, evaluated on augmented benchmark datasets that pair real speech with synthetic audio generated by multiple synthesis systems. In addition, our robustness analysis underscores the method's ability to maintain high performance even in the presence of moderate additive noise. Due to its simplicity, efficiency, and strong generalization across speech synthesis systems and languages, this technique offers a practical tool for digital forensics and security applications.
- Abstract(参考訳): 音声生成技術は品質とアクセシビリティが向上し続けており、偽造、偽情報、偽造などの悪意のあるユースケースのリスクは急速に増大している。
この研究は、AI生成された音声を検出し、ソースモデルにそれを帰属させる、単純で訓練のない、効果的なアプローチを導入することで、この脅威に対処する。
具体的には,(1)オープンワールドにおける単一モデル帰属,(2)特定のターゲットであるニューラル音声合成システム(そのシステムからのデータにのみアクセスする)によって特定のオーディオサンプルが生成されたかどうかを判定すること,2)クローズドワールド環境でのマルチモデル帰属,(2)既知の候補プールから生成されたシステムを特定すること,(3)最後に,(3)合成音声と実音声の検出を行うこと,の3つの課題に取り組む。
提案手法は,低域フィルタまたはEnCodecオーディオオートエンコーダを用いて,入力音声信号とフィルタバージョンとの差分を標準平均残差として利用する。
これらの残余は、多様な音声合成システムによって導入された遺物を一貫して捕捉し、帰属のモデル非依存の指紋として機能することを示した。
提案手法は,多くのシナリオにおいて99%を超えるAUROCスコアを達成し,複数の合成システムによって生成された合成音声と実音声をペアリングする拡張ベンチマークデータセットを用いて評価した。
さらに,ロバスト性解析により,中等度付加雑音の存在下においても高い性能を維持できることを示す。
その単純さ、効率性、および音声合成システムと言語間の強力な一般化により、この技術はデジタル法医学およびセキュリティアプリケーションのための実用的なツールを提供する。
関連論文リスト
- End-to-end streaming model for low-latency speech anonymization [11.098498920630782]
本稿では低レイテンシで話者匿名化を実現するストリーミングモデルを提案する。
システムは軽量コンテンツエンコーダを用いてエンドツーエンドのオートエンコーダ方式で訓練される。
本稿では,2つのシステムの実装による評価結果について述べる。
論文 参考訳(メタデータ) (2024-06-13T16:15:53Z) - VALL-E R: Robust and Efficient Zero-Shot Text-to-Speech Synthesis via Monotonic Alignment [101.2489492032816]
VALL-E Rは、堅牢で効率的なゼロショットテキスト音声合成システムである。
この研究は、失語症に罹患した人々のためのスピーチの作成を含む有意義なプロジェクトに適用される可能性がある。
論文 参考訳(メタデータ) (2024-06-12T04:09:44Z) - Fill in the Gap! Combining Self-supervised Representation Learning with Neural Audio Synthesis for Speech Inpainting [14.402357651227003]
本稿では,音声信号の欠落部分を周囲の文脈から再構成する音声認識用SSLモデルについて検討する。
その目的のために、SSLエンコーダ、すなわち HuBERT とニューラルヴォコーダ、すなわち HiFiGAN を組み合わせてデコーダの役割を演じる。
論文 参考訳(メタデータ) (2024-05-30T14:41:39Z) - Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech Foundation Models [84.8919069953397]
Self-Taught Recognizer (STAR) は、音声認識システムのための教師なし適応フレームワークである。
その結果,STARは14のドメインで平均13.5%の単語誤り率の相対的な減少を実現していることがわかった。
STARは1時間以内のラベル付きデータを必要とする高いデータ効率を示す。
論文 参考訳(メタデータ) (2024-05-23T04:27:11Z) - Multimodal Data and Resource Efficient Device-Directed Speech Detection
with Large Foundation Models [43.155061160275196]
トリガーフレーズを不要にすることで,仮想アシスタントとの対話をより自然なものにする可能性を探る。
我々の目標は、デバイスマイクが記録したストリーミングオーディオから得られる信号に基づいて、仮想アシスタントに対処するかどうかを判断することである。
本稿では,音声認識システムからの1-best仮説とデコーダ信号と,オーディオエンコーダからの音響表現を組み合わせることで,この問題に対処する。
論文 参考訳(メタデータ) (2023-12-06T17:29:03Z) - TokenSplit: Using Discrete Speech Representations for Direct, Refined,
and Transcript-Conditioned Speech Separation and Recognition [51.565319173790314]
TokenSplit は Transformer アーキテクチャを使用するシーケンス・ツー・シーケンス・エンコーダ・デコーダモデルである。
また,本モデルでは,書き起こし条件付けの有無にかかわらず,分離の点で優れた性能を発揮することを示す。
また、自動音声認識(ASR)の性能を測定し、音声合成の音声サンプルを提供し、我々のモデルの有用性を実証する。
論文 参考訳(メタデータ) (2023-08-21T01:52:01Z) - Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive
Bias [71.94109664001952]
Mega-TTSは、大規模な野生データで訓練された新しいゼロショットTSシステムである。
Mega-TTS はゼロショット TTS 音声編集や言語間 TTS タスクにおいて最先端 TTS システムを超えていることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:54:49Z) - Make-A-Voice: Unified Voice Synthesis With Discrete Representation [77.3998611565557]
Make-A-Voiceは、個別表現から音声信号を合成・操作するための統合されたフレームワークである。
我々は,Make-A-Voiceは,競合するベースラインモデルと比較して,音質とスタイルの類似性が優れていることを示す。
論文 参考訳(メタデータ) (2023-05-30T17:59:26Z) - Wave-U-Net Discriminator: Fast and Lightweight Discriminator for
Generative Adversarial Network-Based Speech Synthesis [38.27153023145183]
音声合成において、生成逆数ネットワーク(GAN)を用いて、min-maxゲームにおいてジェネレータ(音声合成器)と識別器を訓練する。
識別器のアンサンブルは、近年のニューラルボコーダ (HiFi-GAN) やエンドツーエンドのテキスト音声 (TTS) システムでよく使われている。
本研究では,Wave-U-Netアーキテクチャを用いた単一だが表現力のある識別器であるWave-U-Net判別器を提案する。
論文 参考訳(メタデータ) (2023-03-24T10:46:40Z) - Self-Supervised Learning for Speech Enhancement through Synthesis [5.924928860260821]
そこで本研究では,ボコーダが雑音表現を受け入れ,クリーンな音声を直接合成する方法を学習する,デノナイズドボコーダ(DeVo)アプローチを提案する。
10msのレイテンシとパフォーマンスの低下を最小限に抑えながら,ストリーミングオーディオ上で動作可能な因果バージョンを実証した。
論文 参考訳(メタデータ) (2022-11-04T16:06:56Z) - Adaptive re-calibration of channel-wise features for Adversarial Audio
Classification [0.0]
合成音声検出のための注意特徴融合を用いた特徴量の再検討を提案する。
本研究では,End2EndモデルやResnetベースモデルなど,さまざまな検出手法との比較を行った。
また,線形周波数ケプストラム係数 (LFCC) とメル周波数ケプストラム係数 (MFCC) の組み合わせにより,より優れた入力特徴表現が得られることを示した。
論文 参考訳(メタデータ) (2022-10-21T04:21:56Z) - Speech Pattern based Black-box Model Watermarking for Automatic Speech
Recognition [83.2274907780273]
音声認識モデルのためのブラックボックス透かし方式を設計する方法はまだ未解決の問題である。
ASRモデルのIPを保護するための最初のブラックボックスモデル透かしフレームワークを提案する。
最先端のオープンソースASRシステムであるDeepSpeechの実験は、提案された透かし方式の有効性を実証している。
論文 参考訳(メタデータ) (2021-10-19T09:01:41Z) - Wav2vec-Switch: Contrastive Learning from Original-noisy Speech Pairs
for Robust Speech Recognition [52.71604809100364]
音声の文脈化表現に雑音のロバスト性をエンコードするwav2vec-Switchを提案する。
具体的には、オリジナルノイズの多い音声ペアを同時にwav2vec 2.0ネットワークに供給する。
既存のコントラスト学習タスクに加えて、原音声と雑音音声の量子化表現を追加の予測対象に切り替える。
論文 参考訳(メタデータ) (2021-10-11T00:08:48Z) - Using multiple reference audios and style embedding constraints for
speech synthesis [68.62945852651383]
提案モデルでは,複数の参照音声を用いて音声の自然さとコンテンツ品質を向上させることができる。
モデルは、スタイル類似性のABX選好テストにおいてベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2021-10-09T04:24:29Z) - End-to-End Video-To-Speech Synthesis using Generative Adversarial
Networks [54.43697805589634]
GAN(Generative Adversarial Networks)に基づくエンドツーエンドビデオ音声合成モデルを提案する。
本モデルは,生映像を入力として受信し,音声を生成するエンコーダ・デコーダアーキテクチャで構成されている。
このモデルは,グリッドなどの制約付きデータセットに対して,顕著なリアリズムで音声を再構成できることを示す。
論文 参考訳(メタデータ) (2021-04-27T17:12:30Z) - Knowledge Transfer for Efficient On-device False Trigger Mitigation [17.53768388104929]
間接的発話は「偽のトリガー」と呼ばれ、プライバシ中心のスマートアシスタントを設計するためには、偽のトリガー緩和(FTM)が不可欠である。
LSTMに基づくFTMアーキテクチャを提案する。このアーキテクチャは,ASRの書き起こしを明示的に生成することなく,音響的特徴から直接ユーザ意図を決定する。
論文 参考訳(メタデータ) (2020-10-20T20:01:44Z) - VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device
Speech Recognition [60.462770498366524]
ターゲットユーザからの音声信号のみを保存するためにデバイス上で実行される単一チャネルソース分離モデルであるVoiceFilter-Liteを導入する。
本研究では,そのようなモデルを8ビット整数モデルとして量子化し,リアルタイムに実行可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T14:26:56Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
本稿では,非並列音声変換手法である非並列音声変換法(seq2seq)を提案する。
本手法では,ボトルネック特徴抽出器(BNE)とセック2セック合成モジュールを組み合わせる。
主観的および主観的評価は,提案手法が自然性と話者類似性の両方において優れた音声変換性能を有することを示す。
論文 参考訳(メタデータ) (2020-09-06T13:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。