Strongly Confined Atomic Excitation Localization in a Weakly-Driven Atom-Waveguide Interface
- URL: http://arxiv.org/abs/2411.14098v1
- Date: Thu, 21 Nov 2024 13:04:22 GMT
- Title: Strongly Confined Atomic Excitation Localization in a Weakly-Driven Atom-Waveguide Interface
- Authors: Shao-Hung Chung, Wei Chen, H. H. Jen,
- Abstract summary: An atomic array coupled to a photonic crystal waveguide forms a strongly coupled quantum interface.
We study its steady-state distribution when the incident fields drive the atoms from both sides at asymmetric angles.
We also consider a defect-driving scheme, where a third zone is created by undriven atoms under symmetric travelling phases.
- Score: 4.608193506134334
- License:
- Abstract: An atomic array coupled to a photonic crystal waveguide forms a strongly coupled quantum interface, exhibiting various intriguing collective features of quantum dynamics. Here we consider a homogeneous atomic array and theoretically investigate its steady-state distribution when the incident fields drive the atoms from both sides at asymmetric angles. This effectively creates an interface shared by two zones of atoms under different driving angles. This setup introduces a competition between photon-mediated dipole-dipole interactions and the directionality of coupling, while differences of the travelling phases from the incident angles further influence the overall steady-state behavior. Under this asymmetric driving scheme, the presence of strongly confined localization can be identified, where localization can occur either at the interface or at one of edges. Additionally, we examine the size effect on the atomic localization, deriving an empirical formula to predict parameter regimes that favor interfaced localization. We also consider a defect-driving scheme, where a third zone is created by undriven atoms under symmetric travelling phases. This results in strongly confined single-site excitation localization, which can be explained through analytical solutions under the reciprocal coupling. Finally, we propose several methods for precise control of multiple single-site localizations under the defect-driving scheme. Our results provide insights into driven-dissipative quantum systems with nonreciprocal couplings and pave the way for quantum simulation of exotic many-body states relevant to quantum information applications.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Entanglement Swapping Using Hyperentangled Pairs of Two-Level Neutral Atoms [1.7647386779510887]
Hyperentangled swapping is a quantum communication technique that involves the exchange of hyperentangled states.
We demonstrate schematics for the hyperentanglement swapping between separate pairs of neutral atoms through the mathematical framework of atomic Bragg diffraction.
arXiv Detail & Related papers (2024-03-30T12:46:13Z) - Steady-state phases and interaction-induced depletion in a
driven-dissipative chirally-coupled dissimilar atomic array [0.0]
We study the steady-state phases of atomic excitations under a weakly-driven condition of laser field.
We reveal an intricate role of the atom at the interface of the dissimilar array in determining the steady-state phases.
Our results can provide insights in the driven-dissipative quantum phases of atomic excitations with nonreciprocal couplings.
arXiv Detail & Related papers (2023-11-24T15:49:04Z) - Atomic excitation trapping in dissimilar chirally-coupled atomic arrays [0.0]
Atomic array coupled to a one-dimensional nanophotonic waveguide allows photon-mediated dipole-dipole interactions and nonreciprocal decay channels.
We study the atomic excitation dynamics and its transport property, specifically at an interface of dissimilar atomic arrays.
Our results can provide insights to nonequilibrium quantum dynamics in dissimilar arrays and shed light on confining and controlling quantum registers useful for quantum information processing.
arXiv Detail & Related papers (2023-11-10T07:18:53Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Coherent ground-state transport of neutral atoms [1.433758865948252]
We construct a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the ground-state manifold of neutral atoms system.
This model can be used to simulate various single-body physics phenomena such as Heisenberg $XX$ spin chain restricted in the single-excitation manifold.
arXiv Detail & Related papers (2021-07-06T03:59:15Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Steering Interchange of Polariton Branches via Coherent and Incoherent
Dynamics [1.9573380763700712]
We propose the control of single- and two-body Jaynes-Cummings systems in a non-equilibrium scenario.
Our findings provide a systematic approach to manipulate polaritons interchange, that we apply to reveal new insights in the transition between Mott Insulator- and Super-like states.
arXiv Detail & Related papers (2020-10-07T16:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.