Coherent ground-state transport of neutral atoms
- URL: http://arxiv.org/abs/2107.02376v4
- Date: Wed, 9 Mar 2022 12:48:29 GMT
- Title: Coherent ground-state transport of neutral atoms
- Authors: X. X. Li, J. B. You, X. Q. Shao, Weibin Li
- Abstract summary: We construct a theoretical model via second-order perturbation theory to realize a long-range coherent transport inside the ground-state manifold of neutral atoms system.
This model can be used to simulate various single-body physics phenomena such as Heisenberg $XX$ spin chain restricted in the single-excitation manifold.
- Score: 1.433758865948252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum state transport is an important way to study the energy or
information flow. By combining the unconventional Rydberg pumping mechanism and
the diagonal form of van der Waals interactions, we construct a theoretical
model via second-order perturbation theory to realize a long-range coherent
transport inside the ground-state manifold of neutral atoms system. With the
adjustment of the Rabi frequencies and the interatomic distance, this model can
be used to simulate various single-body physics phenomena such as Heisenberg
$XX$ spin chain restricted in the single-excitation manifold, coherently
perfect quantum state transfer, parameter adjustable Su-Schrieffer-Heeger
model, and chiral motion of atomic excitation in the triangle by varying the
geometrical arrangement of the three atoms, which effectively avoid the
influence of atomic spontaneous emission at the same time. Moreover, the
influence of atomic position fluctuation on the fidelity of quantum state
transmission is discussed in detail, and the corresponding numerical results
show that our work provides a robust and easy-implemented scheme for quantum
state transport with neutral atoms.
Related papers
- Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Rydberg platform for non-ergodic chiral quantum dynamics [0.46603287532620735]
We propose a mechanism for engineering chiral interactions in Rydberg atoms via a directional antiblockade condition.
We observe non-ergodic behavior via either scars, confinement, or localization, upon simply tuning the strength of two driving fields acting on the atoms.
arXiv Detail & Related papers (2023-09-21T18:00:02Z) - Periodic quantum Rabi model with cold atoms at deep strong coupling [0.0]
We experimentally demonstrate atomic dynamics predicted by the periodic quantum Rabi model far in the deep strong coupling regime.
The observed dynamics becomes relevant when the edge of the Brillouin zone is reached.
arXiv Detail & Related papers (2023-07-12T22:49:07Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Spin- and Momentum-Correlated Atom Pairs Mediated by Photon Exchange and
Seeded by Vacuum Fluctuations [0.0]
We experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes.
We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space.
Our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments.
arXiv Detail & Related papers (2023-03-20T17:59:03Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Coherent Atom Transport via Enhanced Shortcuts to Adiabaticity:
Double-Well Optical Lattice [0.0]
We study fast atomic transport in a moving em double-well optical lattice.
We use two classes of quantum-control methods: shortcuts to adiabaticity (STA) and enhanced STA.
This study has direct implications for neutral-atom quantum computing.
arXiv Detail & Related papers (2021-12-28T08:39:49Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Steering Interchange of Polariton Branches via Coherent and Incoherent
Dynamics [1.9573380763700712]
We propose the control of single- and two-body Jaynes-Cummings systems in a non-equilibrium scenario.
Our findings provide a systematic approach to manipulate polaritons interchange, that we apply to reveal new insights in the transition between Mott Insulator- and Super-like states.
arXiv Detail & Related papers (2020-10-07T16:31:03Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.