論文の概要: Point Cloud Resampling with Learnable Heat Diffusion
- arxiv url: http://arxiv.org/abs/2411.14120v1
- Date: Thu, 21 Nov 2024 13:44:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:19:00.898208
- Title: Point Cloud Resampling with Learnable Heat Diffusion
- Title(参考訳): 学習可能な熱拡散による点雲再サンプリング
- Authors: Wenqiang Xu, Wenrui Dai, Duoduo Xue, Ziyang Zheng, Chenglin Li, Junni Zou, Hongkai Xiong,
- Abstract要約: ポイントクラウド再サンプリングのための学習可能な熱拡散フレームワークを提案する。
前の固定された拡散モデルとは異なり、適応条件は点雲の幾何学的特徴を選択的に保存する。
- 参考スコア(独自算出の注目度): 58.050130177241186
- License:
- Abstract: Generative diffusion models have shown empirical successes in point cloud resampling, generating a denser and more uniform distribution of points from sparse or noisy 3D point clouds by progressively refining noise into structure. However, existing diffusion models employ manually predefined schemes, which often fail to recover the underlying point cloud structure due to the rigid and disruptive nature of the geometric degradation. To address this issue, we propose a novel learnable heat diffusion framework for point cloud resampling, which directly parameterizes the marginal distribution for the forward process by learning the adaptive heat diffusion schedules and local filtering scales of the time-varying heat kernel, and consequently, generates an adaptive conditional prior for the reverse process. Unlike previous diffusion models with a fixed prior, the adaptive conditional prior selectively preserves geometric features of the point cloud by minimizing a refined variational lower bound, guiding the points to evolve towards the underlying surface during the reverse process. Extensive experimental results demonstrate that the proposed point cloud resampling achieves state-of-the-art performance in representative reconstruction tasks including point cloud denoising and upsampling.
- Abstract(参考訳): 生成拡散モデルは、ノイズを段階的に構造に精製することで、スパースまたはノイズの多い3次元点雲からより密集したより均一な点分布を生成する、点雲再サンプリングにおいて経験的な成功を示している。
しかし、既存の拡散モデルは手動で事前定義されたスキームを採用しており、幾何学的劣化の厳密で破壊的な性質のため、基礎となる点雲構造を回復することができないことが多い。
そこで本研究では,時間変化熱カーネルの適応熱拡散スケジュールと局所フィルタリングスケールを学習することにより,前処理の限界分布を直接パラメータ化し,逆処理に先立って適応条件を生成する,点雲再サンプリングのための新しい学習可能な熱拡散フレームワークを提案する。
固定された事前を持つ以前の拡散モデルとは異なり、適応条件は、逆過程の間、点が基底面に向かって進化するように誘導する洗練された変分下界を最小化することにより、点雲の幾何学的特徴を選択的に保存する。
大規模な実験結果から,提案した点群再サンプリングは点群復調やアップサンプリングを含む代表的再構成作業において,最先端の性能を達成することが示された。
関連論文リスト
- Enhancing Diffusion-based Point Cloud Generation with Smoothness Constraint [5.140589325829964]
拡散モデルはポイントクラウド生成タスクで人気がある。
点雲生成のための拡散フレームワークに局所的滑らか性制約を組み込むことを提案する。
実験により、提案モデルが現実的な形状とスムーズな点雲を生成できることを示した。
論文 参考訳(メタデータ) (2024-04-03T01:55:15Z) - PCRDiffusion: Diffusion Probabilistic Models for Point Cloud
Registration [28.633279452622475]
本稿では,ノイズ変換からオブジェクト変換への拡散過程として,ポイントクラウド登録を定式化する新しいフレームワークを提案する。
トレーニング段階では、オブジェクト変換は地中構造変換からランダムな分布へと拡散し、モデルがこのノイズ発生過程を逆転することを学ぶ。
サンプリング段階では、モデルはランダムに生成された出力への変換をプログレッシブな方法で洗練する。
論文 参考訳(メタデータ) (2023-12-11T01:56:42Z) - DiffusionPCR: Diffusion Models for Robust Multi-Step Point Cloud
Registration [73.37538551605712]
ポイントクラウド登録(PCR)は、2つのポイントクラウド間の相対的な厳密な変換を推定する。
本稿では, PCR を拡散確率過程として定式化し, ノイズ変換を基礎的真理にマッピングする。
実験ではDiffusionPCRの有効性を示し,3Dおよび3DLoMatchに対する最先端の登録リコール率(95.3%/81.6%)を得た。
論文 参考訳(メタデータ) (2023-12-05T18:59:41Z) - A Conditional Denoising Diffusion Probabilistic Model for Point Cloud
Upsampling [10.390581335119098]
PUDMと呼ばれる点群アップサンプリングのための条件分解拡散確率モデル(DDPM)を提案する。
PUDMはスパース点雲を条件として扱い、高密度点雲と雑音の間の変換関係を反復的に学習する。
PUDMは実験結果に強い耐雑音性を示す。
論文 参考訳(メタデータ) (2023-12-03T12:41:41Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
メッシュ生成のための新しいスパース潜在点拡散モデルを設計する。
私たちの重要な洞察は、ポイントクラウドをメッシュの中間表現と見なし、代わりにポイントクラウドの分布をモデル化することです。
提案したスパース潜在点拡散モデルにより,生成品質と制御性において優れた性能が得られる。
論文 参考訳(メタデータ) (2023-03-14T14:25:29Z) - GECCO: Geometrically-Conditioned Point Diffusion Models [60.28388617034254]
テキスト上で条件付き画像を生成する拡散モデルが最近,コンピュータビジョンコミュニティをはるかに超えている。
ここでは、無条件および条件付きの両方の点雲を画像で生成するという、関連する問題に取り組む。
後者では,スパーク画像の特徴を点雲に投影することに基づく,幾何学的動機付けによる新しい条件付け手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T13:45:44Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Deep Point Set Resampling via Gradient Fields [11.5128379063303]
現実世界のオブジェクトやシーンをスキャンして取得した3Dポイントクラウドは、幅広いアプリケーションを見つけました。
しばしばノイズに悩まされるか、低密度に悩まされるため、表面の再構築や理解といった下流の作業が妨げられる。
本稿では, 点雲の連続勾配場を学習する, 復元のための点集合再サンプリングの新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2021-11-03T07:20:35Z) - Diffusion Probabilistic Models for 3D Point Cloud Generation [12.257593992442732]
我々は,様々な3次元視覚タスクにおいて重要なポイントクラウド生成の確率モデルを提案する。
非平衡熱力学における拡散過程にインスパイアされ、熱浴に接触した熱力学系における点雲の点を粒子とみなす。
我々は、トレーニングのための閉形式における変分境界を導出し、モデルの実装を提供する。
論文 参考訳(メタデータ) (2021-03-02T03:56:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。