論文の概要: FoPru: Focal Pruning for Efficient Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2411.14164v1
- Date: Thu, 21 Nov 2024 14:22:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:20:19.164404
- Title: FoPru: Focal Pruning for Efficient Large Vision-Language Models
- Title(参考訳): FoPru: 高能率ビジョンランゲージモデルのためのフーカルプルーニング
- Authors: Lei Jiang, Weizhe Huang, Tongxuan Liu, Yuting Zeng, Jing Li, Lechao Cheng, Xiaohua Xu,
- Abstract要約: 本稿では、視覚エンコーダから導出される注目に基づくトークンの重要度に基づいて、視覚トークンを抽出する訓練不要なFocal Pruning(FoPru)を提案する。
提案手法は,高い精度を維持しつつ多数の冗長トークンを抽出し,推論効率を大幅に向上させる。
- 参考スコア(独自算出の注目度): 11.36025001578531
- License:
- Abstract: Large Vision-Language Models (LVLMs) represent a significant advancement toward achieving superior multimodal capabilities by enabling powerful Large Language Models (LLMs) to understand visual input. Typically, LVLMs utilize visual encoders, such as CLIP, to transform images into visual tokens, which are then aligned with textual tokens through projection layers before being input into the LLM for inference. Although existing LVLMs have achieved significant success, their inference efficiency is still limited by the substantial number of visual tokens and the potential redundancy among them. To mitigate this issue, we propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder. Specifically, we introduce two alternative pruning strategies: 1) the rank strategy, which leverages all token significance scores to retain more critical tokens in a global view; 2) the row strategy, which focuses on preserving continuous key information in images from a local perspective. Finally, the selected tokens are reordered to maintain their original positional relationships. Extensive experiments across various LVLMs and multimodal datasets demonstrate that our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
- Abstract(参考訳): LVLM(Large Vision-Language Models)は、強力な言語モデル(LLM)による視覚入力の理解により、優れたマルチモーダル機能を実現するための大きな進歩を示す。
通常、LVLMはCLIPのようなビジュアルエンコーダを使用して画像をビジュアルトークンに変換し、推論のためにLLMに入力される前にプロジェクション層を介してテキストトークンと整列する。
既存のLVLMは大きな成功を収めているが、その推論効率は、かなりの数の視覚トークンと潜在的な冗長性によって制限されている。
この問題を緩和するために、視覚エンコーダから導出される注目に基づくトークンの意義に基づいて、視覚トークンを誘発する訓練不要なFocal Pruning (FoPru)を提案する。
具体的には,2つの代替プルーニング戦略を紹介する。
1) すべてのトークン重要度スコアを利用して,より重要なトークンをグローバルな視点で保持するランク戦略
2) 画像中の連続キー情報を局所的な視点から保存することに焦点を当てた行戦略。
最後に、選択されたトークンは、元の位置関係を維持するために並べ替えられる。
様々なLVLMおよびマルチモーダルデータセットにわたる大規模な実験により、高精度を維持しながら多数の冗長トークンを創出できることが示され、推論効率が大幅に向上した。
関連論文リスト
- AdaFV: Rethinking of Visual-Language alignment for VLM acceleration [7.9213473377478865]
偏りのあるVLMの自己アテンションに応じて視覚トークンを減らすいくつかのアプローチは、不正確な応答をもたらす。
本稿では,視覚的満足度とテキスト・ツー・イメージの類似性の有効性を動的に活用する,自己適応型クロスモーダリティ・アテンション・ミックス機構を提案する。
提案手法は,特に縮小速度が十分に大きい場合,最先端のトレーニング不要なVLM加速性能を実現する。
論文 参考訳(メタデータ) (2025-01-16T13:34:33Z) - [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
MLLM(Multi- Language Large Language Models)は、最近、広範囲の視覚タスクにおいて強力なパフォーマンスを示した。
しかし、その効率的なデプロイメントは、高い計算コストとメモリ要求のため、依然として大きな課題である。
本稿では,VTC圧縮という,列車不要の視覚圧縮のための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-12-08T05:29:39Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
高解像度の画像やビデオは、彼らの広く普及するための障壁となる。
MLLMにおける視覚トークンの圧縮は、推論コストを削減するための有望なアプローチとして現れている。
本稿では,事前学習した視覚エンコーダの能力を利用して類似画像セグメントをグループ化する,新たなグループ化機構であるVisToGを紹介する。
論文 参考訳(メタデータ) (2024-11-26T09:36:02Z) - Spatial-Aware Efficient Projector for MLLMs via Multi-Layer Feature Aggregation [10.468784974994465]
マルチモーダル言語モデル(MLLM)におけるプロジェクタの役割
プロジェクタに関する現在の調査では、効率を改善するために視覚トークンの数を減らすことに重点を置いている。
この問題に対処するために空間認識効率プロジェクタ(SAEP)を提案する。
論文 参考訳(メタデータ) (2024-10-14T09:25:09Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
マルチモーダル大言語モデル(MLLM)に視覚的プロンプトを注入する学習自由手法を提案する。
我々は,エネルギー関数に基づいて学習可能な潜伏変数を最適化し,注目マップにおける参照領域の強度を高める。
提案手法は,参照能力のMLLMへの統合に有望な方向を与え,ボックス,マスク,スクリブル,ポイントによる参照を支援する。
論文 参考訳(メタデータ) (2024-07-31T11:40:29Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
視覚トークン化は、視覚と言語間のセマンティックアライメントに不可欠である。
本稿では,新しい動的セマンティック等価ビジョントケナイザ(SeTok)を提案する。
SeTokは動的クラスタリングアルゴリズムを通じて、視覚的特徴をセマンティックユニットにグループ化する。
結果として得られる視覚トークンは意味的整合性を効果的に保持し、低周波と高周波の両方の視覚特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-06-07T17:55:43Z) - Boosting Multimodal Large Language Models with Visual Tokens Withdrawal for Rapid Inference [59.91176945361035]
高速推論のためにMLLMを高速化するプラグイン・アンド・プレイモジュールであるVisual Tokens Withdrawal (VTW)を紹介した。
VTWは、あるレイヤで視覚トークンを戦略的に取り除き、テキストトークンだけがその後のレイヤに関与できるようにする。
提案手法は,マルチモーダルタスクにおいて,性能を維持しながら計算オーバーヘッドを40%以上削減できる。
論文 参考訳(メタデータ) (2024-05-09T14:38:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。