論文の概要: FoPru: Focal Pruning for Efficient Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2411.14164v1
- Date: Thu, 21 Nov 2024 14:22:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:49.833247
- Title: FoPru: Focal Pruning for Efficient Large Vision-Language Models
- Title(参考訳): FoPru: 高能率ビジョンランゲージモデルのためのフーカルプルーニング
- Authors: Lei Jiang, Weizhe Huang, Tongxuan Liu, Yuting Zeng, Jing Li, Lechao Cheng, Xiaohua Xu,
- Abstract要約: 本稿では、視覚エンコーダから導出される注目に基づくトークンの重要度に基づいて、視覚トークンを抽出する訓練不要なFocal Pruning(FoPru)を提案する。
提案手法は,高い精度を維持しつつ多数の冗長トークンを抽出し,推論効率を大幅に向上させる。
- 参考スコア(独自算出の注目度): 11.36025001578531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) represent a significant advancement toward achieving superior multimodal capabilities by enabling powerful Large Language Models (LLMs) to understand visual input. Typically, LVLMs utilize visual encoders, such as CLIP, to transform images into visual tokens, which are then aligned with textual tokens through projection layers before being input into the LLM for inference. Although existing LVLMs have achieved significant success, their inference efficiency is still limited by the substantial number of visual tokens and the potential redundancy among them. To mitigate this issue, we propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder. Specifically, we introduce two alternative pruning strategies: 1) the rank strategy, which leverages all token significance scores to retain more critical tokens in a global view; 2) the row strategy, which focuses on preserving continuous key information in images from a local perspective. Finally, the selected tokens are reordered to maintain their original positional relationships. Extensive experiments across various LVLMs and multimodal datasets demonstrate that our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
- Abstract(参考訳): LVLM(Large Vision-Language Models)は、強力な言語モデル(LLM)による視覚入力の理解により、優れたマルチモーダル機能を実現するための大きな進歩を示す。
通常、LVLMはCLIPのようなビジュアルエンコーダを使用して画像をビジュアルトークンに変換し、推論のためにLLMに入力される前にプロジェクション層を介してテキストトークンと整列する。
既存のLVLMは大きな成功を収めているが、その推論効率は、かなりの数の視覚トークンと潜在的な冗長性によって制限されている。
この問題を緩和するために、視覚エンコーダから導出される注目に基づくトークンの意義に基づいて、視覚トークンを誘発する訓練不要なFocal Pruning (FoPru)を提案する。
具体的には,2つの代替プルーニング戦略を紹介する。
1) すべてのトークン重要度スコアを利用して,より重要なトークンをグローバルな視点で保持するランク戦略
2) 画像中の連続キー情報を局所的な視点から保存することに焦点を当てた行戦略。
最後に、選択されたトークンは、元の位置関係を維持するために並べ替えられる。
様々なLVLMおよびマルチモーダルデータセットにわたる大規模な実験により、高精度を維持しながら多数の冗長トークンを創出できることが示され、推論効率が大幅に向上した。
関連論文リスト
- Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference [28.24397677839652]
マルチモーダル大規模言語モデル(MLLM)は、事前訓練された視覚エンコーダの視覚的特徴を大規模言語モデルに統合することにより、視覚言語タスクの性能を向上させる。
MLLMがどのように処理し、どのように視覚情報を利用するかは、まだ不明である。
階層型モダリティ・アウェア・プルーニング(HiMAP, Hierarchical Modality-Aware Pruning)を提案する。
論文 参考訳(メタデータ) (2025-03-17T12:31:23Z) - [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
MLLM(Multi- Language Large Language Models)は、最近、広範囲の視覚タスクにおいて強力なパフォーマンスを示した。
しかし、その効率的なデプロイメントは、高い計算コストとメモリ要求のため、依然として大きな課題である。
本稿では,VTC圧縮という,列車不要の視覚圧縮のための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-12-08T05:29:39Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
高解像度の画像やビデオは、彼らの広く普及するための障壁となる。
MLLMにおける視覚トークンの圧縮は、推論コストを削減するための有望なアプローチとして現れている。
本稿では,事前学習した視覚エンコーダの能力を利用して類似画像セグメントをグループ化する,新たなグループ化機構であるVisToGを紹介する。
論文 参考訳(メタデータ) (2024-11-26T09:36:02Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
視覚言語モデル(VLM)は、様々な視覚的理解と推論タスクにまたがる強力な能力を示している。
推論コストを削減するために、LLM(Large Language Models)を縮小するか、イメージを表すのに必要な入力トークンの数を削減できる。
高速圧縮に適したトークン圧縮アルゴリズムを設計する第一歩を踏み出す。
論文 参考訳(メタデータ) (2024-11-05T18:54:21Z) - Spatial-Aware Efficient Projector for MLLMs via Multi-Layer Feature Aggregation [10.468784974994465]
マルチモーダル言語モデル(MLLM)におけるプロジェクタの役割
プロジェクタに関する現在の調査では、効率を改善するために視覚トークンの数を減らすことに重点を置いている。
この問題に対処するために空間認識効率プロジェクタ(SAEP)を提案する。
論文 参考訳(メタデータ) (2024-10-14T09:25:09Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
我々は、視覚トークンの数を減らさずに、冗長な視覚トークンを「スキップ層」として活用することで、視覚計算を減らし、新しいアプローチを導入する。
提案手法であるVideoLLM-MoDは深度混合LLMにインスパイアされ,長期・ストリーミングビデオにおける多数の視覚トークンの課題に対処する。
論文 参考訳(メタデータ) (2024-08-29T17:21:58Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
マルチモーダル大言語モデル(MLLM)に視覚的参照を注入する学習自由手法を提案する。
MLLMにおけるテキストプロンプトトークンと視覚トークンの関係を観察する。
我々は,エネルギー関数に基づいて学習可能な視覚トークンを最適化し,注目マップにおける参照領域の強度を高める。
論文 参考訳(メタデータ) (2024-07-31T11:40:29Z) - TokenPacker: Efficient Visual Projector for Multimodal LLM [37.1071749188282]
ビジュアルプロジェクタは、ビジュアルエンコーダとLarge Language Model(LLM)の間に必須のブリッジとして機能する。
本稿では,密集した特徴を注入して凝縮した視覚トークンを生成するために,粗く細かなスキームを取り入れた新しいビジュアルプロジェクタを提案する。
我々のアプローチでは、ビジュアルトークンを75%89%圧縮し、多様なベンチマークで同等またはさらに優れたパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-02T16:10:55Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
視覚トークン化は、視覚と言語間のセマンティックアライメントに不可欠である。
本稿では,新しい動的セマンティック等価ビジョントケナイザ(SeTok)を提案する。
SeTokは動的クラスタリングアルゴリズムを通じて、視覚的特徴をセマンティックユニットにグループ化する。
結果として得られる視覚トークンは意味的整合性を効果的に保持し、低周波と高周波の両方の視覚特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-06-07T17:55:43Z) - Boosting Multimodal Large Language Models with Visual Tokens Withdrawal for Rapid Inference [59.91176945361035]
高速推論のためにMLLMを高速化するプラグイン・アンド・プレイモジュールであるVisual Tokens Withdrawal (VTW)を紹介した。
私たちのアプローチは、私たちが観察した2つの興味深い現象にインスピレーションを受けています。
我々のVTWアプローチは、性能を維持しながら、様々なマルチモーダルタスクで計算オーバーヘッドを40%以上削減できる。
論文 参考訳(メタデータ) (2024-05-09T14:38:53Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
大規模マルチモーダルモデル(LMM)は、視覚エンコーダと大きな言語モデルとを接続することで、視覚的推論能力を示す。
近年のLMMには、高解像度の画像やビデオなど、より複雑な視覚入力が組み込まれており、視覚トークンの数が大幅に増加する。
我々は,LMMの性能を損なうことなく,視覚トークンの数を著しく削減する適応型視覚トークン削減戦略であるPruMergeを提案する。
論文 参考訳(メタデータ) (2024-03-22T17:59:52Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
LLMを事前訓練された視覚モデルに組み込んだマルチモーダル大規模言語モデル(MLLM)は、近年、多様な視覚言語タスクにまたがる印象的なパフォーマンスを実証している。
しかし、複数の画像を含む文脈を理解するには不十分である。
本稿では,2つのフェーズ・パラダイムであるブラウズ・アンド・集中型を提案し,より深いマルチモーダルコンテキスト融合を実現する。
論文 参考訳(メタデータ) (2024-02-19T14:59:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。