CP-UNet: Contour-based Probabilistic Model for Medical Ultrasound Images Segmentation
- URL: http://arxiv.org/abs/2411.14250v1
- Date: Thu, 21 Nov 2024 15:56:30 GMT
- Title: CP-UNet: Contour-based Probabilistic Model for Medical Ultrasound Images Segmentation
- Authors: Ruiguo Yu, Yiyang Zhang, Yuan Tian, Zhiqiang Liu, Xuewei Li, Jie Gao,
- Abstract summary: We propose a contour-based probabilistic segmentation model CP-UNet.
It guides the segmentation network to enhance its focus on contour during decoding.
We show that our method performs better on breast and thyroid lesions segmentation.
- Score: 15.56723271531489
- License:
- Abstract: Deep learning-based segmentation methods are widely utilized for detecting lesions in ultrasound images. Throughout the imaging procedure, the attenuation and scattering of ultrasound waves cause contour blurring and the formation of artifacts, limiting the clarity of the acquired ultrasound images. To overcome this challenge, we propose a contour-based probabilistic segmentation model CP-UNet, which guides the segmentation network to enhance its focus on contour during decoding. We design a novel down-sampling module to enable the contour probability distribution modeling and encoding stages to acquire global-local features. Furthermore, the Gaussian Mixture Model utilizes optimized features to model the contour distribution, capturing the uncertainty of lesion boundaries. Extensive experiments with several state-of-the-art deep learning segmentation methods on three ultrasound image datasets show that our method performs better on breast and thyroid lesions segmentation.
Related papers
- CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse views X-ray computed tomography has emerged as a contemporary technique to mitigate radiation dose degradation.
Recent studies utilizing deep learning methods has made promising progress in removing artifacts for Sparse-View Computed Tomography (SVCT)
Our study proposes a adaptive reconstruction method to achieve high-performance SVCT reconstruction at any sampling rate.
arXiv Detail & Related papers (2024-09-03T03:06:15Z) - Semantic Segmentation Refiner for Ultrasound Applications with Zero-Shot Foundation Models [1.8142288667655782]
We propose a prompt-less segmentation method harnessing the ability of segmentation foundation models to segment abstract shapes.
Our method's advantages are brought to light in experiments on a small-scale musculoskeletal ultrasound images dataset.
arXiv Detail & Related papers (2024-04-25T04:21:57Z) - Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation [2.4113205575263708]
We propose an image synthesis method that utilizes denoising diffusion probabilistic models (DDPMs) to automatically generate retinal optical coherence tomography ( OCT) images.
We observe a consistent improvement in layer segmentation accuracy, which is validated using various neural networks.
These findings demonstrate the promising potential of DDPMs in reducing the need for manual annotations of retinal OCT images.
arXiv Detail & Related papers (2023-11-09T16:09:24Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model [0.2578242050187029]
We present a diffusion probabilistic model that is fully unsupervised to learn from noise instead of signal.
Our method can significantly improve the image quality with a simple working pipeline and a small amount of training data.
arXiv Detail & Related papers (2022-01-27T19:02:38Z) - DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring [66.91879314310842]
We propose an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features.
A multi-scale cascaded feature refinement module then predicts the deblurred image from the deconvolved deep features.
We show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts and quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin.
arXiv Detail & Related papers (2021-03-18T00:38:11Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.