DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring
- URL: http://arxiv.org/abs/2103.09962v2
- Date: Tue, 08 Oct 2024 05:39:30 GMT
- Title: DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring
- Authors: Jiangxin Dong, Stefan Roth, Bernt Schiele,
- Abstract summary: We propose an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features.
A multi-scale cascaded feature refinement module then predicts the deblurred image from the deconvolved deep features.
We show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts and quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin.
- Score: 66.91879314310842
- License:
- Abstract: We present a simple and effective approach for non-blind image deblurring, combining classical techniques and deep learning. In contrast to existing methods that deblur the image directly in the standard image space, we propose to perform an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features. A multi-scale cascaded feature refinement module then predicts the deblurred image from the deconvolved deep features, progressively recovering detail and small-scale structures. The proposed model is trained in an end-to-end manner and evaluated on scenarios with simulated Gaussian noise, saturated pixels, or JPEG compression artifacts as well as real-world images. Moreover, we present detailed analyses of the benefit of the feature-based Wiener deconvolution and of the multi-scale cascaded feature refinement as well as the robustness of the proposed approach. Our extensive experimental results show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts and quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Enhanced Wavelet Scattering Network for image inpainting detection [0.0]
This paper proposes several innovative ideas for detecting inpainting forgeries based on low level noise analysis.
It combines Dual-Tree Complex Wavelet Transform (DT-CWT) for feature extraction with convolutional neural networks (CNN) for forged area detection and localization.
Our approach was benchmarked against state-of-the-art methods and demonstrated superior performance over all cited alternatives.
arXiv Detail & Related papers (2024-09-25T15:27:05Z) - Self-Supervised Single-Image Deconvolution with Siamese Neural Networks [6.138671548064356]
Inverse problems in image reconstruction are fundamentally complicated by unknown noise properties.
Deep learning methods allow for flexible parametrization of the noise and learning its properties directly from the data.
We tackle this problem with Fast Fourier Transform convolutions that provide training speed-up in 3D deconvolution tasks.
arXiv Detail & Related papers (2023-08-18T09:51:11Z) - High-Resolution Volumetric Reconstruction for Clothed Humans [27.900514732877827]
We present a novel method for reconstructing clothed humans from a sparse set of, e.g., 1 to 6 RGB images.
Our method significantly reduces the mean point-to-surface (P2S) precision of state-of-the-art methods by more than 50% to achieve approximately 2mm accuracy with a 512 volume resolution.
arXiv Detail & Related papers (2023-07-25T06:37:50Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
We present a model for non-blind image deconvolution that incorporates the classic iterative method into a deep learning application.
We build our network based on the iterative Landweber deconvolution algorithm, which is integrated with trainable convolutional layers to enhance the recovered image structures and details.
arXiv Detail & Related papers (2022-09-30T11:15:03Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - Pan-sharpening via High-pass Modification Convolutional Neural Network [39.295436779920465]
We propose a novel pan-sharpening convolutional neural network based on a high-pass modification block.
The proposed block is designed to learn the high-pass information, leading to enhance spatial information in each band of the multi-spectral-resolution images.
Experiments demonstrate the superior performance of the proposed method compared to the state-of-the-art pan-sharpening methods.
arXiv Detail & Related papers (2021-05-24T23:39:04Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.