Improving Routability Prediction via NAS Using a Smooth One-shot Augmented Predictor
- URL: http://arxiv.org/abs/2411.14296v1
- Date: Thu, 21 Nov 2024 16:42:41 GMT
- Title: Improving Routability Prediction via NAS Using a Smooth One-shot Augmented Predictor
- Authors: Arjun Sridhar, Chen-Chia Chang, Junyao Zhang, Yiran Chen,
- Abstract summary: Routability optimization in modern EDA tools has benefited greatly from using machine learning (ML) models.
NAS techniques struggle to perform well on routability prediction as a result of two primary factors.
We craft a novel NAS technique, coined SOAP-NAS, to address these challenges through novel data augmentation techniques and a novel combination of one-shot and predictor-based NAS.
- Score: 4.381471268889061
- License:
- Abstract: Routability optimization in modern EDA tools has benefited greatly from using machine learning (ML) models. Constructing and optimizing the performance of ML models continues to be a challenge. Neural Architecture Search (NAS) serves as a tool to aid in the construction and improvement of these models. Traditional NAS techniques struggle to perform well on routability prediction as a result of two primary factors. First, the separation between the training objective and the search objective adds noise to the NAS process. Secondly, the increased variance of the search objective further complicates performing NAS. We craft a novel NAS technique, coined SOAP-NAS, to address these challenges through novel data augmentation techniques and a novel combination of one-shot and predictor-based NAS. Results show that our technique outperforms existing solutions by 40% closer to the ideal performance measured by ROC-AUC (area under the receiver operating characteristic curve) in DRC hotspot detection. SOAPNet is able to achieve an ROC-AUC of 0.9802 and a query time of only 0.461 ms.
Related papers
- Delta-NAS: Difference of Architecture Encoding for Predictor-based Evolutionary Neural Architecture Search [5.1331676121360985]
We craft an algorithm with the capability to perform fine-grain NAS at a low cost.
We propose projecting the problem to a lower dimensional space through predicting the difference in accuracy of a pair of similar networks.
arXiv Detail & Related papers (2024-11-21T02:43:32Z) - TG-NAS: Leveraging Zero-Cost Proxies with Transformer and Graph Convolution Networks for Efficient Neural Architecture Search [1.30891455653235]
TG-NAS aims to create training-free proxies for architecture performance prediction.
We introduce TG-NAS, a novel model-based universal proxy that leverages a transformer-based operator embedding generator and a graph convolution network (GCN) to predict architecture performance.
TG-NAS achieves up to 300X improvements in search efficiency compared to previous SOTA ZC proxy methods.
arXiv Detail & Related papers (2024-03-30T07:25:30Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
We propose a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG.
Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them.
We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS.
When integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.
arXiv Detail & Related papers (2023-05-26T13:58:18Z) - Robust Neural Architecture Search [19.214462477848535]
We propose a novel NAS method, Robust Neural Architecture Search (RNAS)
To design a regularization term to balance accuracy and robustness, RNAS generates architectures with both high accuracy and good robustness.
Experiments show that RNAS achieves state-of-the-art (SOTA) performance on both image classification and adversarial attacks.
arXiv Detail & Related papers (2023-04-06T03:21:24Z) - U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture
Search [50.33956216274694]
optimizing resource utilization in target platforms is key to achieving high performance during DNN inference.
We propose a novel hardware-aware NAS framework that does not only optimize for task accuracy and inference latency, but also for resource utilization.
We achieve 2.8 - 4x speedup for DNN inference compared to prior hardware-aware NAS methods.
arXiv Detail & Related papers (2022-03-23T13:44:15Z) - BaLeNAS: Differentiable Architecture Search via the Bayesian Learning
Rule [95.56873042777316]
Differentiable Architecture Search (DARTS) has received massive attention in recent years, mainly because it significantly reduces the computational cost.
This paper formulates the neural architecture search as a distribution learning problem through relaxing the architecture weights into Gaussian distributions.
We demonstrate how the differentiable NAS benefits from Bayesian principles, enhancing exploration and improving stability.
arXiv Detail & Related papers (2021-11-25T18:13:42Z) - PEng4NN: An Accurate Performance Estimation Engine for Efficient
Automated Neural Network Architecture Search [0.0]
Neural network (NN) models are increasingly used in scientific simulations, AI, and other high performance computing fields.
NAS attempts to find well-performing NN models for specialized datsets, where performance is measured by key metrics that capture the NN capabilities.
We propose a performance estimation strategy that reduces the resources for training NNs and increases NAS throughput without jeopardizing accuracy.
arXiv Detail & Related papers (2021-01-11T20:49:55Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
Binarized neural architecture search (BNAS) produces extremely compressed models to reduce huge computational cost on embedded devices for edge computing.
An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS.
arXiv Detail & Related papers (2020-09-08T15:51:23Z) - BRP-NAS: Prediction-based NAS using GCNs [21.765796576990137]
BRP-NAS is an efficient hardware-aware NAS enabled by an accurate performance predictor-based on graph convolutional network (GCN)
We show that our proposed method outperforms all prior methods on NAS-Bench-101 and NAS-Bench-201.
We also release LatBench -- a latency dataset of NAS-Bench-201 models running on a broad range of devices.
arXiv Detail & Related papers (2020-07-16T21:58:43Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution.
With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based generalization.
To alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme.
arXiv Detail & Related papers (2020-06-18T08:23:02Z) - Powering One-shot Topological NAS with Stabilized Share-parameter Proxy [65.09967910722932]
One-shot NAS method has attracted much interest from the research community due to its remarkable training efficiency and capacity to discover high performance models.
In this work, we try to enhance the one-shot NAS by exploring high-performing network architectures in our large-scale Topology Augmented Search Space.
The proposed method achieves state-of-the-art performance under Multiply-Adds (MAdds) constraint on ImageNet.
arXiv Detail & Related papers (2020-05-21T08:18:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.