ROSMonitoring 2.0: Extending ROS Runtime Verification to Services and Ordered Topics
- URL: http://arxiv.org/abs/2411.14367v1
- Date: Thu, 21 Nov 2024 18:07:31 GMT
- Title: ROSMonitoring 2.0: Extending ROS Runtime Verification to Services and Ordered Topics
- Authors: Maryam Ghaffari Saadat, Angelo Ferrando, Louise A. Dennis, Michael Fisher,
- Abstract summary: ROSMonitoring 2.0 is designed to facilitate the monitoring of both topics and services while considering the order in which messages are published and received.
The framework has been enhanced to support these novel features for ROS1 -- and partially ROS2 environments.
We discuss the modifications made to accommodate these advancements and present results from a case study involving the runtime monitoring of specific components of a fire-fighting Uncrewed Aerial Vehicle.
- Score: 1.4680035572775536
- License:
- Abstract: Formal verification of robotic applications presents challenges due to their hybrid nature and distributed architecture. This paper introduces ROSMonitoring 2.0, an extension of ROSMonitoring designed to facilitate the monitoring of both topics and services while considering the order in which messages are published and received. The framework has been enhanced to support these novel features for ROS1 -- and partially ROS2 environments -- offering improved real-time support, security, scalability, and interoperability. We discuss the modifications made to accommodate these advancements and present results obtained from a case study involving the runtime monitoring of specific components of a fire-fighting Uncrewed Aerial Vehicle (UAV).
Related papers
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
Text-to-image (T2I) models have shown remarkable progress, but their potential to generate harmful content remains a critical concern in the ML community.
We propose ICER, a novel red-teaming framework that generates interpretable and semantic meaningful problematic prompts.
Our work provides crucial insights for developing more robust safety mechanisms in T2I systems.
arXiv Detail & Related papers (2024-11-25T04:17:24Z) - A SAT-based approach to rigorous verification of Bayesian networks [13.489622701621698]
We introduce a verification framework tailored for Bayesian networks, designed to address these drawbacks.
Our framework comprises two key components: (1) a two-step compilation and encoding scheme that translates Bayesian networks into Boolean logic literals, and (2) formal verification queries that leverage these literals to verify various properties encoded as constraints.
We benchmark the efficiency of our verification scheme and demonstrate its practical utility in real-world scenarios.
arXiv Detail & Related papers (2024-08-02T03:06:51Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
We present a framework for intuitive robot programming by non-experts.
We leverage natural language prompts and contextual information from the Robot Operating System (ROS)
Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface.
arXiv Detail & Related papers (2024-06-28T08:28:38Z) - Object Detection with Transformers: A Review [11.255962936937744]
This paper provides a comprehensive review of 21 recently proposed advancements in the original DETR model.
We conduct a comparative analysis across various detection transformers, evaluating their performance and network architectures.
We hope that this study will ignite further interest among researchers in addressing the existing challenges and exploring the application of transformers in the object detection domain.
arXiv Detail & Related papers (2023-06-07T16:13:38Z) - MeROS: SysML-based Metamodel for ROS-based Systems [0.0]
This article proposes a new metamodel for ROS called MeROS, which addresses the running system and developer workspace.
The latest ROS 1 concepts are considered, such as nodelet, action, and metapackage.
The metamodel is derived from the requirements and verified on the practical example of Rico assistive robot.
arXiv Detail & Related papers (2023-03-14T22:10:57Z) - Monitoring ROS2: from Requirements to Autonomous Robots [58.720142291102135]
This paper provides an overview of a formal approach to generating runtime monitors for autonomous robots from requirements written in a structured natural language.
Our approach integrates the Formal Requirement Elicitation Tool (FRET) with Copilot, a runtime verification framework, through the Ogma integration tool.
arXiv Detail & Related papers (2022-09-28T12:19:13Z) - CycleTrans: Learning Neutral yet Discriminative Features for
Visible-Infrared Person Re-Identification [79.84912525821255]
Visible-infrared person re-identification (VI-ReID) is a task of matching the same individuals across the visible and infrared modalities.
Existing VI-ReID methods mainly focus on learning general features across modalities, often at the expense of feature discriminability.
We present a novel cycle-construction-based network for neutral yet discriminative feature learning, termed CycleTrans.
arXiv Detail & Related papers (2022-08-21T08:41:40Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
We present a flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTingAnism (ROSETTA)
Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks.
Experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance.
arXiv Detail & Related papers (2022-05-06T07:31:28Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.